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1. Introduction

The quantization of Kähler manifolds seems to play an increasingly important role in

certain areas of field and string theory. In particular, recent work on fuzzy geometry,

which is partly inspired by string theory, suggests that certain versions of “geometric”

quantization provide a framework for a better understanding of fuzzy spaces. In particular,

it was proposed in [1] that a specific quantization procedure leads to a general definition

of fuzzy compact Kähler manifolds. While originally formulated in terms of an explicit

embedding in projective space, this procedure has an intrinsic geometric meaning, which

we explore and clarify in the present paper.

It is perhaps not surprising that fuzzy Kähler geometry turns out to be intimately

related with Berezin quantization [2] of compact Kähler manifolds, which was studied in [3 –

5] and more recently in [6]–[14] in its Berezin-Toeplitz variant. As we will show, however,

the connection involves a few interesting twists. For example, the proposal of [1] is not

ordinary (or classical) Berezin or Berezin-Toeplitz quantization in the sense of loc. cit., but

rather a modified “Berezin-Bergman” version, which can itself be viewed as a particular

realization of a more general Berezin-like procedure. To fully clarify the situation, we

introduce generalized Berezin and Toeplitz quantizations of compact Kähler manifolds and

show how the proposal of [1] fits into this larger framework.

In classical Berezin quantization [3 – 5], one starts with a compact Hodge manifold

(X,ω) (where ω is the symplectic form) endowed with a Hermitian holomorphic line bundle

L whose Chern connection has curvature equal to −2πiω. Using the Hermitian metric h

of L and the volume form of ω, one constructs L2-scalar products 〈 , 〉k on the spaces

of holomorphic sections Ek := H0(L⊗k) of the positive tensor powers of L. One then

performs Berezin quantization at each sufficiently large level k using the coherent states

of the finite-dimensional Hilbert spaces (Ek, 〈 , 〉k). The coherent states define Berezin

quantization maps Qk : Σk → End(Ek), where Σk are finite-dimensional subspaces of

C∞(X). A closely related quantization procedure known as Toeplitz quantization was

studied in [6 – 10, 12, 13]. This prescription has better asymptotic properties and is related

to Berezin quantization via a geometric version of the Berezin transform. Both quantization

prescriptions depend only on the data (X,L, h) – which determines1 ω; however, we will

often use the redundant parameterization (X,ω,L, h) for reasons of notational clarity.

The extension discussed in the present paper starts with the observation that the

Berezin quantization maps Qk at each fixed level k depend only on the holomorphic bundle

L⊗k and on the Hermitian scalar product on its space of holomorphic sections. Hence the

entire procedure can be generalized by replacing the L2-products 〈 , 〉k with an arbitrary

sequence of Hermitian scalar products ( , )k on the spaces Ek. This results in what we

1Notice that (X,ω,L) determines h up to a constant factor.
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call generalized Berezin quantization of the Hodge manifold (X,ω). While classical Berezin

quantization depends on the data (X,L, h), its generalized version depends on (X,ω,L) and

on the sequence of scalar products ( , )k on the spaces H0(L⊗k), where L is a holomorphic

line bundle such that c1(L) = [ω]. This gives a large class of apparently novel quantizations

of (X,ω). A similar extension exists for Toeplitz quantization and depends on the same

data plus the choice of a Radon measure onX. It is related to the corresponding generalized

Berezin quantization via an extension of the geometric Berezin transform.

Using this framework, we will show that the procedure proposed in [1] amounts to per-

forming generalized Berezin quantization with respect to a certain series of scalar products

on Ek which are induced in an intrinsic manner from a given scalar product on E1 = H0(L).

This quantization prescription, which we shall call Berezin-Bergman quantization, depends

only on the data (X,ω,L, ( , )) and generally differs from the classical Berezin quanti-

zation based on (X,ω,L, h). It is intimately related with a certain sequence of Bergman

metrics [15] on X and might be of interest in studies of Kähler metrics of constant scalar

curvature. Berezin-Bergman quantization has a series of simplifying features which make

it eminently computable. In particular, it is rather straightforward to determine the asso-

ciated quantum objects in this prescription. As an application, we consider a sequence of

truncated Laplace operators inspired by this quantization scheme, which can be used to

approximate the spectrum of the full Laplacian. These truncated Laplacians correspond to

the standard fuzzy Laplacian in the case of complex projective spaces. Explicit numerical

computations are presented for the quadratic and cubic Fermat curves in P2 (the complex

planar conic and an elliptic curve, respectively).

We will show that classical Berezin and Berezin-Bergman quantization agree for the

case of complex projective spaces, in which they both recover the usual fuzzy geome-

try construction. The reason for this agreement is due to the fact that Pn = U(n +

1)/ (U(n) × U(1)) is a Kähler homogeneous space, and that both quantization prescrip-

tions are compatible with the transitive U(n + 1) action. Since they agree for the only

well-studied examples of fuzzy compact Kähler spaces, it follows that both quantization

schemes provide potential definitions of general ‘fuzzy compact Kähler manifolds’. Which

of these one chooses to use depends on the desired asymptotic properties in the classical

(i.e. large k) limit, which are currently well understood only for classical Berezin quanti-

zation. Thus one could as well choose the latter as a general definition of fuzzy Kähler

geometry.

Generalized Berezin-Toeplitz quantization provides a precise framework for “lifting”

operators from the space of functions to the quantum Hilbert space, an operation which we

call Berezin-Toeplitz lift. We propose to define the “fuzzy” Laplacian of a compact Hodge

manifold as the Berezin-Toeplitz lift of the Laplace operator through the Berezin-Toeplitz

quantization of that manifold. Together with the integral representation of the trace also

derived in the present paper, the Berezin-Toeplitz lift of the Laplacian enables us to give

an explicit definition of fuzzy scalar field theory on arbitrary compact Hodge manifolds.

This construction might be of interest for the fuzzy field theory community.

The paper is organized as follows. In section 2, we recall some facts about polarizations

and quantum line bundles, mostly in order to fix our notations and terminology. We also
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discuss Bergman metrics and metrized Kodaira embeddings and introduce a “relative”

version of Rawnsley’s epsilon function [3], which will prove useful for our purpose. In

section 3, we introduce the generalized Berezin and Berezin-Toeplitz quantization defined

by a sequence of scalar products and explore their basic properties. In particular, we discuss

the relation between the two extended quantization procedures and address the effect of

changing the scalar products. We also discuss the notion of relatively balanced Bergman

metrics, which enters naturally in our set-up, as well as the lift of linear operators from the

space of functions to the quantization space. Finally, we construct the generalized Berezin

(coherent state) product and give the description of the quantization in the language of

star algebras. In section 4, we recall the basic properties of classical Berezin and Berezin-

Toeplitz quantization and in particular their asymptotic behavior, which allows for the

construction of the associated formal deformation quantizations [7, 8, 10, 12]. We also

briefly discuss the classical quantization of affine and projective spaces, which will be used

later. For projective spaces, we follow an approach which recovers the formalism used in [1],

showing that the notion of fuzzy projective spaces [17] coincides with the classical Berezin

quantization of those spaces. section 5 gives the general description of Berezin-Bergman

quantization. After presenting the intrinsic formulation, we show how one can recover the

description through embeddings in Pn and clarify some of its basic properties. We also

show that the Berezin-Bergman quantization of Pn coincides with the classical Berezin

quantization of the latter, an accident2 which is due to the fact that complex projective

spaces are homogeneous Kähler manifolds. Section 6 takes up the issue of “quantized

harmonic analysis” in the framework of classical Berezin quantization. We discuss two

ways of constructing a fuzzy Laplace operator. One is used to compute the approximate

spectrum of harmonic functions on Fermat curves, while the other one appears in the

construction of fuzzy scalar field theory on arbitrary compact Hodge manifolds.

2. Polarizations, quantum line bundles and Bergman metrics

2.1 Polarizations and quantum line bundles

Consider a connected compact complex manifold X of complex dimension n. Recall that

a polarization of X is a positive holomorphic line bundle L over X. Given a polarized

complex manifold (X,L), there exists a positive integer k0 such that the tensor powers

Lk := L⊗k are very ample for all k ≥ k0; in particular, X can be presented as a projective

algebraic variety by the Kodaira embedding determined by Lk for any k ≥ k0.

A Kähler form ω on X is called integral if its cohomology class [ω] belongs to H2(X,Z);

in this case, (X,ω) is called a Hodge manifold. Given a polarization L of X, the Kähler

form is called L-polarized if [ω] equals c1(L). In this case, L is called a Kähler polarization

of (X,ω) and the triple (X,L, ω) is called a polarized Hodge manifold. It is well-known

that any Hodge manifold (X,ω) admits Kähler polarizations; moreover, the isomorphism

classes of Kähler polarizations for (X,ω) form a torsor under the Abelian group Pic0(X)

2Such a simple relation between Berezin-Bergman and Berezin quantization should not be expected for

general compact Hodge manifolds.
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of degree zero holomorphic line bundles. In particular, Kähler polarizations of (X,ω) are

unique up to isomorphism when X is simply connected. Conversely, a polarized complex

manifold (X,L) admits Kähler metrics whose Kähler class equals c1(L).

Given a polarized manifold (X,L), there exists a well-known bijection between L-

polarized Kähler metrics onX and homothety (positive constant prefactor rescaling) classes

of Hermitian bundle metrics on L. Recall that this bijection is determined as follows:

(a) Given a Hermitian metric h on L, there exists a unique Kähler metric on X whose

Kähler form satisfies ω = i
2πF , where F is the curvature of the Chern connection3

∇ of (L, h). This Kähler metric is automatically L-polarized since c1(L) = i
2π [F ].

Multiplying h by a positive constant does not change the associated Kähler metric.

(b) Given an L-polarized Kähler form ω, there exists a Hermitian metric h on L such that

ω = i
2πF , where F is the curvature of the Chern connection of (L, h). The metric

h is determined by ω up to multiplication by a positive constant. Such a Hermitian

line bundle (L, h) is sometimes called a quantum line bundle for (X,ω), and one says

that (X,ω,L, h) is a prequantized Hodge manifold. Two quantum line bundles (L, h)

and (L′, h′) for (X,ω) are called equivalent if there exists an isomorphism ψ : L→ L′

of holomorphic line bundles such that ψ∗(h′) = h. Equivalence classes of quantum

line bundles for (X,ω) form a Hom(π1(X), S1)-torsor.

Given a quantum line bundle (L, h), one can endow Lk with the induced metric hk =

h⊗k and with the corresponding Chern connection ∇k = ∇⊗k. Then ω = i
2πkFk, where

Fk = kF is the curvature of ∇k. A fixed positive measure µ on X induces a Hermitian

scalar product on the space of smooth sections Γ(Lk):

〈s1, s2〉µ,hk :=

∫

X
dµ hk(s1, s2) . (2.1)

We let L2
k(L, h, µ) be the L2-completion of Γ(Lk) with respect to this scalar product.

The finite-dimensional subspace H0(Lk) ⊂ Γ(Lk) of holomorphic sections inherits a scalar

product, which we denote by the same symbol. The standard choice for µ is the Liouville

measure determined by the canonical volume form ωn

n! of (X,ω):

〈s1, s2〉hk :=

∫

X

ωn

n!
hk(s1, s2) , (2.2)

however, it is often useful to work more generally. For example, one has another natural

measure — namely that defined by the volume form Ω∧ Ω̄ — when (X,ω) is algebraically

a Calabi-Yau manifold, (i.e. when c1(TX) = 0) with holomorphic top form Ω. In these

cases, one is often interested in Kähler forms ω in a given integral cohomology class, which

however differ from the Kähler form ωCY of the Calabi-Yau metric in that class. (Thus

one has [ω] = [ωCY] = c for some positive class c ∈ H2(X,Z) but ω 6= ωCY.) Recall that

ωCY is not explicitly known in practice. In such a situation, one has ωn

n! 6= Ω ∧ Ω̄ =
ωn

CY
n! .

3The Chern connection is the unique connection on (L, h) which is both Hermitian and compatible with

the holomorphic structure.
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An automorphism of a prequantized Hodge manifold (X,ω,L, h) is a pair γ := (γ0, γ1)

such that γ0 is a holomorphic isometry of (X,ω) and γ is a holomorphic bundle isometry

of (L, h) above γ0. In particular, γ1(x) is an isometry from (Lx, h(x)) to (Lγ0(x), h(γ0(x)))

for all x ∈ X. The automorphisms of (X,ω,L, h) form a group which we denote by

Aut(X,ω,L, h). This group acts linearly on the space of sections H0(Lk) via:

ρk(γ)(s) = γ⊗k1 ◦ s ◦ γ−1
0 (s ∈ H0(Lk)) . (2.3)

The actions ρk : Aut(X,ω,L, h) → End(H0(Lk)) are unitary with respect to the L2-

scalar product (2.1) provided that the measure µ is invariant under the group Aut(X,ω) of

holomorphic isometries of ω. This is the case, for example, when µ is the Liouville measure

defined by ω.

An automorphism γ is called trivial if γ0 = idX and γ1 is given by γ1(x) = (eiα)· for

all x, where α is a real constant. Thus Aut(X,ω,L, h) always contains a U(1) subgroup.

The quotient Aut(X,ω,L, h)/U(1) is the subgroup AutL,h(X,ω) ⊂ Aut(X,ω) of those

holomorphic isometries γ0 of (X,ω) which admit a lift γ1 : L → L such that (γ0, γ1) is an

automorphism of (X,ω,L, h). Thus we have an exact sequence of groups [3]:

1 → U(1) → Aut(X,ω,L, h) → AutL,h(X,ω) → 1 . (2.4)

In general, the inclusion AutL,h(X,ω) ⊂ Aut(X,ω) is strict, i.e. not every holomorphic

isometry admits a lift. The obstruction to the existence of such a lift lives in the group

Hom(π1(X), S1), so in particular AutL,h(X,ω) equals Aut(X,ω) when X is simply con-

nected. Notice that Aut(X,ω) is usually discrete since a generic Hodge manifold has no

continuous holomorphic isometries. The case usually studied in the fuzzy literature (namely

that of rather special homogeneous spaces) is highly non-generic in this regard.

Remark. A holomorphic section σ of L which is not identically zero yields a local frame

above the open set Uσ := {x ∈ X|σ(x) 6= 0}. With respect to this frame, the Chern

connection ∇ of (L, h) is given by ∇ ≡ d+ ∂ log h(σ, σ), where d = ∂ + ∂̄ and ∂ are the de

Rham and Dolbeault operators. Its curvature is F = −∂∂̄ log h(σ, σ) = −2πiω. Hence the

function Kσ := − log h(σ, σ) defines a local Kähler potential on Uσ:

ω =
i

2π
∂∂̄Kσ .

Every section s ∈ Γ(Lk) can be written above Uσ in the form s = fσ⊗k, where f is a

smooth complex-valued function on Uσ, which is holomorphic iff s is holomorphic. When

the measure µ satisfies µ(X \ Uσ) = 0, this gives isometries of Γ(Lk) and H0(Lk) with

the spaces of smooth, respectively holomorphic functions on Uσ endowed with the scalar

product:

〈f, g〉k,σ =

∫

Uσ

dµ e−kKσ f̄g . (2.5)

It follows that L2
k(L, h, µ) can be identified with the space L2(Uσ, e

−kKσµ).
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2.2 Parameterizing hermitian bundle metrics and polarized Kähler forms

Fixing a polarized complex manifold (X,L), let L be the total space of L and L0 be the

total space with the graph o of the zero section removed. Hermitian metrics h on L are

uniquely determined by their square norm functions ĥ ∈ C∞(L0,R+):

ĥ(q) := h(q, q) , q ∈ L .

These are smooth non-negative functions on L, strictly positive on L0 and having the

property ĥ(cq) = |c|2ĥ(q) for all q ∈ L and all c ∈ C (this property implies ĥ|o = 0). The

set Met(L) of Hermitian metrics on L can be identified with the set of all such functions on

L and thus forms an infinite-dimensional convex cone in C∞(L,R). As a consequence, L-

polarized Kähler metrics are parameterized by rays in this real cone. If we fix a reference

metric h0 on L, then any other metric h is described by the smooth positive function

φ = ĥ
ĥ0

on X, and we find that Met(L) can also be identified with C∞(X,R∗
+). Taking

the logarithm ψ = log φ, this gives bijections between Met(L) and C∞(X,R), as well as

between the set of L-polarized Kähler metrics and the space {ψ ∈ C∞(X,R)|ψ(x) = 0},
where x is any fixed point of X.

In this paper, we will use a slightly different parameterization in the case when L

is very ample. For any q ∈ L0, we let q̂ : H0(L) → C be the linear functional (called

evaluation functional) defined through:

s(π(q)) = q̂(s)q , s ∈ H0(L) , (2.6)

where π : L → X is the bundle projection. We have the obvious property ĉq = 1
c q̂ for all

non-vanishing complex numbers c. The very ampleness of L implies q̂ 6= 0 for all q ∈ L0.

A Hermitian scalar product ( , ) on the finite-dimensional space H0(L) induces a

scalar product on the dual space H0(L)∗ = HomC(H0(L),C), which allows us to consider

the Hermitian metric hB on L whose square norm function is given by:

ĥB(q) =
1

||q̂||2 (q ∈ L0) (2.7)

(and ĥB |o = 0). This is called the Bergman metric4 [15] on L defined by the scalar product

( , ). Since we now have a reference Hermitian metric on L, we can describe any other

metric h via the positive function:

ǫ :=
ĥ

ĥB
∈ C∞(X,R∗

+) , (2.8)

which we call the epsilon function of h relative to ( , ):

h(q, q) = ǫ(π(q))hB(q, q) . (2.9)

Thus Hermitian metrics on L are parameterized by their relative epsilon functions, once

we fixed a scalar product on H0(L).

4The name of these metrics honors the work of the mathematician Stefan Bergman.
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The relative epsilon function defined above depends on h and on the scalar product

chosen on H0(L), and is a generalization of the more familiar object considered in [3 – 5].

To make contact with the latter, notice that fixing h gives a distinguished choice of a scalar

product on H0(L), namely the L2-product 〈 , 〉 defined by h and by the Liouville measure

of the associated Kähler form ω. The epsilon function of h with respect to this L2-scalar

product depends on h only (remember that ω is determined by h), and will be called the

absolute epsilon function of h. The latter is the epsilon function considered in [3 – 5].

The L-polarized Kähler metric on X determined by hB is called the Bergman metric

on X induced by ( , ). Its Kähler form is denoted by ωB . The Kähler form ω determined

by the Hermitian bundle metric (2.9) takes the form:

ω = ωB − i

2π
∂∂̄ log ǫ ,

so as expected we have ω = ωB iff the relative epsilon function of h is constant. Since

ω determines h up to multiplication by a constant, it also determines the relative epsilon

function of the latter up to the same ambiguity. We will see below that the L-polarized

Bergman metrics are those metrics induced on X by pulling-back Fubini-Study metrics

through the Kodaira embedding i : X →֒ P[H0(L)∗] determined by the very ample line

bundle L, where the Fubini-Study metric being pulled-back is determined by the scalar

product on H0(L)∗.

Remarks.

1. Let n + 1 := dimCH
0(L) and pick an arbitrary basis s0 . . . sn of H0(L). Setting

Gij := (si, sj), we have:

||q̂||2 =
n∑

i,j=0

Gij q̂(si)q̂(sj) (q ∈ L0) ,

where Gij are the entries of the inverse matrix to (Gij):

n∑

j=0

GijGjk = δik .

The norm square with respect to the bundle Bergman metric determined by ( , )

takes the form:

hB(q, q) =
1

∑n
i,j=0G

ij q̂(si)q̂(sj)
(q ∈ L0) ,

while the epsilon function relative to ( , ) of an arbitrary Hermitian metric h on L is

given by:

ǫ(x) =

n∑

i,j=0

Gijh(x)(si(x), sj(x)) .

The Hermitian metric h is given as follows in terms of its relative epsilon function:

h(q, q) = ǫ(x)hB(q, q) =
ǫ(x)

∑n
i,j=0G

ij q̂(si)q̂(sj)
.
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2. Bergman bundle metrics on L are in bijection with Hermitian products on H0(L),

which form the non-compact homogeneous space U(n + 1,C) \ GL(n + 1,C) under

the action of GL(n + 1,C) ≃ GL(H0(L)). They are extremely special in the set of

all Hermitian bundle metrics on L. Correspondingly, L-polarized Bergman metrics

on X are extremely special among L-polarized Kähler metrics.

3. The L2-scalar product on H0(L) defined by hB and by the volume form of ωB:

〈s, t〉 =

∫

X

ωnB
n!
hB(s, t) (s, t ∈ H0(L))

need not coincide with the scalar product ( , ) which parameterizes hB . If they do,

one says that the scalar product ( , ) and associated Bergman bundle and manifold

metrics hB , ωB are balanced [18]. It is clear that ωB is balanced iff its absolute epsilon

function is constant; Hermitian line bundles (L, hB) endowed with balanced bundle

metrics were called regular in [4, 5]. It was shown in [18] that a balanced scalar

product on H0(L) is unique up to a constant scale factor if it exists, so L-polarized

balanced metrics on X are at most unique. A polarized complex manifold (X,L) is

called balanced if H0(L) admits a balanced scalar product. When L is very ample,

it is known (see e.g. [19, 20]) that (X,L) is balanced iff its Kodaira embedding i(X)

is Chow-Mumford stable in the projective space P[H0(L)∗].

2.3 Bergman metrics from metrized Kodaira embeddings

Let X be a compact complex manifold. By the Kodaira embedding theorem, a very ample

line bundle L gives a holomorphic embedding i : X →֒ PV , where V = E∗ and E := H0(L)

is the space of holomorphic sections of L, whose complex dimension we denote by n+1. The

embedding allows us to view X as a regular projective variety in PV , whose homogeneous

coordinate ring R(X,L) = ⊕k≥0H
0(Lk) is generated in degree one. In particular, L and

the pull-back i∗(H) of the hyperplane bundle H := OPV (1) are isomorphic as holomorphic

line bundles.

Conversely, if we are given any smooth projective variety X in a projective space PV

whose vanishing ideal I(X) is generated in degrees greater than one, then the restriction

OX(1) = OPV (1)|X is very ample and the embedding X →֒PV can be viewed as the Kodaira

embedding determined by this restriction. The space of holomorphic sections of OX(1)

identifies with the vector space E = V ∗.

A metrized Kodaira embedding is a Kodaira embedding determined by a very ample

line bundle L on X together a fixed choice of a Hermitian scalar product ( , ) on its space of

holomorphic sections E := H0(L). For such embeddings, the scalar product on E induces

a scalar product on V = E∗, which makes PV into a (finite-dimensional) projective Hilbert

space. The latter carries the Fubini-Study metric5 determined by the scalar product. Its

Kähler form is given by:

π∗(ωFS)(v) =
i

2π
∂∂̄ log(||v||2) ,

5Recall that homogeneous Kähler metrics on PV are in bijection with Hermitian scalar products on E

taken up to constant rescaling, and these are the Fubini-Study metrics. They are all related by PGL(E)-

transformations.
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where π : V → PV is the canonical projection while || || is the norm induced on V = E∗.
There exists a one to one correspondence between metrized Kodaira embeddings of X

and holomorphic embeddings in finite-dimensional projective Hilbert spaces such that the

vanishing ideal of the embedding is generated in degrees greater than one.

The Fubini-Study metric admits the hyperplane bundle H as a quantum line bundle,

when the latter is endowed with the Hermitian bundle metric hFS induced from E. Since

L ≃ i∗(H) as holomorphic line bundles, the pull-back i∗(hFS) defines a Hermitian metric hB
on L. The latter coincides with the Bergman bundle metric determined by ( , ). The pulled-

back Kähler form ωB = i∗(ωFS) admits (L, hB) as a quantum line bundle, and coincides

with the Bergman Kähler form determined by ( , ). It follows that Bergman metrics on X

coincide with pull-backs of Fubini-Study metrics via metrized Kodaira embeddings.

Remark. A choice of basis z0 . . . zn for E = V ∗ allows us to express v ∈ V as: v =∑n
i=0 viei, where (ei) is the basis of V dual to (zi) and vi = zi(v). This gives an identification

of V with the space Cn+1 endowed with the scalar product given by 〈u, v〉 =
∑n

i,j=0G
ij ūivj ,

where the Gij are given as above. Then PV identifies with Pn endowed with the Fubini-

Study metric defined by this scalar product. It is customary to choose an orthonormal basis,

in which case the Fubini-Study metric takes the familiar form in homogeneous coordinates.

In this case, the freedom of choosing the scalar product ( , ) is replaced by the freedom of

acting with PGL(n + 1,C) transformations on the homogeneous coordinates of Pn.

3. Generalized Berezin and Toeplitz quantization

Two related general methods for quantizing compact Hodge manifolds are provided by the

so-called Berezin and Berezin-Toeplitz quantization, which were studied in [3 – 5] and [6,

8 – 10, 12 – 14]. This quantization scheme realizes ideas going back to [2] in a modified

and extended form. In this approach, one starts with a prequantized Hodge manifold

(X,ω,L, h) and considers the sequence of Hermitian vector spaces (Ek := H0(Lk), 〈 , 〉k)
for k ≥ k0, where k0 is a positive integer k such that Lk is very ample for all k ≥ k0. The

Hermitian scalar products 〈 , 〉k are taken to be the L2-products (2.2) induced by h and

by the Liouville measure of ω. At every level k, the Hermitian structure makes H0(Lk)

into a reproducing kernel Hilbert space, and in particular allows one to introduce coherent

vectors, which are special holomorphic sections of Lk parameterized by the points of X.

Using these vectors, one defines Berezin symbol maps σk : End(Ek) → C∞(X), which turn

out to be injective due to compactness of X. The inverses on the images Σk of these maps

provide bijections Qk : Σk → End(Ek) which are known as Berezin quantization maps. The

collection (Qk)k≥k0 of such maps constitutes the classical Berezin quantization of (X,ω)

induced by the quantum line bundle (L, h).

A fundamental problem in this approach is to describe the asymptotic behavior of Qk
for large k. One relevant problem is whether the sequence Qk defines in some manner

a formal deformation quantization of X, and to identify the corresponding formal star

product. It turns out that these questions can be answered quite elegantly by consid-

ering a variation of Berezin’s approach, which is known as classical Berezin-Toeplitz or
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simply classical Toeplitz quantization. This modified quantization prescription consists of

replacing Qk by the so-called Toeplitz quantization maps Tk : C∞(X) → End(Ek), which

are constructed as integral operators with the help of the coherent state projector. The

asymptotic behavior of Tk(f) can be controlled using results of de Monvel, Guillemin and

Sjöstrand [23, 24], allowing one to prove [7, 8, 10, 12] that Toeplitz quantization gives rise

to a formal star product and thus to a formal deformation quantization of (X,ω). Since

Berezin and Toeplitz quantization turn out to be related via a general version of the Berezin

transform (which corresponds to a “change of operator ordering”), this also allows one to

construct a formal star product corresponding to Berezin quantization [12] (see [14] for a

different approach).

The construction of classical Berezin and Toeplitz quantizations can be generalized by

considering an arbitrary sequence of scalar products ( , )k on the spaces H0(Lk) instead

of the L2-products (2.2). This leads to what we call generalized Berezin and Toeplitz

quantizations. In this section, we discuss the basic properties of the resulting quantization

schemes. As in the classical case, an important question — which we do not attempt to

settle here — concerns the asymptotic behavior of these generalized quantizations for large

k, which will of course depend markedly on the choice of scalar products.

When studying the situation at each fixed level k ≥ k0, the replacement L→ Lk allows

us to work with a very ample line bundle L while dropping the index k from the notation.

Let us therefore fix a compact complex manifold X, a very ample line bundle L on X and

a Hermitian scalar product ( , ) on the vector space E := H0(L), whose dimension we

denote by N+1. In the following we will sometimes consider an arbitrary basis s0 . . . sN of

H0(L). In this case, we let G be the Hermitian positive matrix with entries Gij := (si, sj)

and Gij be the entries of the inverse matrix G−1. Any section s ∈ E can be expanded as:

s =
N∑

i,j=0

Gij(sj , s)si .

3.1 Coherent states

Given q ∈ L0, consider the evaluation functional q̂ on E defined in (2.6). By Riesz’s

theorem, there exists a unique holomorphic section eq ∈ E such that (eq, s) = q̂(s) for all

s ∈ E. Direct computation gives the explicit expression:

eq =

N∑

i,j=0

Gjiq̂(si)sj ,

which implies:

||eq||2 =

N∑

i,j=0

Gij q̂(si)q̂(sj) .

Notice that eq cannot be the zero section, since that would imply that all sections of L

vanish at x = π(q), which is impossible since L is very ample. The element eq of E is

called the Rawnsley coherent vector [3] defined by q. Also notice that eq depends only on

the scalar product chosen on E.
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If q′ is another non-vanishing element of the fiber Lx, then q′ = cq for some non-

vanishing complex number c and we have eq′ = 1
c̄eq. It follows that the complex line

lx := 〈eq〉 = Ceq ⊂ E depends only on the point x ∈ X. This can be interpreted as

follows. Let L̄ be the line bundle obtained by reversing the complex structure of all fibers;6

this is a holomorphic line bundle over the complex manifold X̄ obtained by reversing

the complex structure of X. The scaling property of coherent vectors implies that the

element ex := q̄ ⊗ eq ∈ L̄x ⊗ H0(L) depends only on the point x ∈ X. The scalar

product on H0(L) extends to a sesquilinear map taking [L̄x ⊗E]× [L̄y ⊗E] into L̄x ⊗ L̄y.

In particular, the combination K(x, y) = (ex, ey) defines a holomorphic section K of the

external tensor product L̄⊠ L̄ (which is a holomorphic line bundle over X×X̄). This is the

reproducing kernel of the finite-dimensional Hilbert space (H0(L), ( , )). Also notice that

the vector eq gives a well-defined element [ex] of the projective space PE, which depends

antiholomorphically on x ∈ X. This is called the Rawnsley coherent state at x. Thus

we have an antiholomorphic embedding j : X → PE, called the coherent state embedding

(cf. [16]); it can be viewed as dual to the metrized Kodaira embedding.

Rawnsley’s coherent projectors are the orthoprojectors on the lines lx ⊂ E:

Px :=
|eq)(eq|
(eq|eq)

(q ∈ Lx \ {0}) . (3.1)

They depend only on L, on the point x ∈ X and on the scalar product chosen on E. Given

a linear operator C ∈ End(E), its lower Berezin symbol is the function σ(C) : X → C

given by:

σ(C)(x) := tr(CPx) =
(eq|C|eq)
(eq|eq)

(q ∈ Lx \ {0}) . (3.2)

This gives a linear map σ : End(E) → C∞(X), whose image we denote by Σ. Notice that σ

and Σ depend only on L and on the scalar product ( , ) chosen on E. The obvious relation:

σ(C†) = σ(C)

implies that Σ is closed under complex conjugation, i.e. Σ̄ = Σ. Also notice that Σ contains

the constant unit function 1X = σ(idE).

3.2 Generalized Berezin quantization

It was shown in [5] that the Berezin symbol map σ : End(E) → C∞(X) is injective when

( , ) is the L2-scalar product defined by a Hermitian metric on L and by the Liouville

measure of the associated Kähler form. We show below that the Berezin symbol changes

as in (3.19) when changing the scalar product. This implies that σ is in fact injective

for an arbitrary scalar product on E. Hence the corestriction σ|Σ : End(E) → Σ is a

6Thus the fiber L̄x coincides with Lx as an additive group, but is endowed with the external multiplication

with scalars given by α ∗ u = ᾱu for all α ∈ C and all u ∈ Lx. The identity map becomes an antilinear

involution when viewed as a map from Lx to L̄x. This gives an involution between L and L̄, which we

denote by an overline.
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linear isomorphism and we can associate an operator on E to every function f ∈ Σ via the

generalized Berezin quantization map Q = (σ|Σ)−1 : Σ → End(E):

Q(f) := σ−1(f) ∀f ∈ Σ . (3.3)

The extension from the case of [3 – 5] is simply that we allow for an arbitrary scalar product

on E. The Berezin quantization map depends only on L and on the choice of this scalar

product. It satisfies the relations:

Q(f̄) = Q(f)† , Q(1X) = idE .

The Berezin star algebra. The Berezin product ⋄ : Σ × Σ → Σ is defined via the

formula:

f ⋄ g := σ(Q(f)Q(g)) ⇔ Q(f ⋄ g) = Q(f)Q(g) . (3.4)

Together with the usual complex conjugation of functions f → f̄ , it makes Σ into a

unital finite-dimensional associative ∗-algebra. The Berezin quantization map gives an

isomorphism of ∗-algebras:

Q : (Σ, ⋄, )̄ → (End(E), ◦, †) .

Recall that (End(E), ◦, †, || ||HS) is a B∗-algebra7 with non-degenerate trace given by the

usual trace of operators. It follows that the induced linear map (called the Berezin trace):
∫∫
f := tr Q(f) (f ∈ Σ) (3.5)

is a nondegenerate trace on the Berezin star algebra (Σ, ⋄, )̄:
∫∫
f̄ =

∫∫
f

∫∫
f ⋄ g =

∫∫
g ⋄ f

∫∫
f ⋄ g = 0 , ∀g ∈ Σ ⇒ f = 0 .

Moreover, the scalar product on Σ (called the Berezin scalar product) obtained by trans-

porting the Hilbert-Schmidt product:

≺ f, g ≻B := 〈Q(f), Q(g)〉HS = tr
(
Q(f)†Q(g)

)
(3.6)

coincides with the scalar product induced by the Berezin trace:

≺ f, g ≻B=

∫∫
f̄ ⋄ g .

Since (End(E), ◦, †, || ||HS) is a B∗-algebra, the norm defined by the Berezin product sat-

isfies:

||f ⋄ g||B ≤ ||f ||B ||g||B
||f̄ ||B = ||f ||B .

Thus (Σ, ⋄, ,̄ || ||B) is a B∗-algebra with non-degenerate trace, and (Q,σ) are mutually

inverse isomorphisms of B∗-algebras with trace. Notice that ||1X ||B = ||idE ||HS = N + 1.

7A B∗ algebra is a Banach (||xy|| ≤ ||x|| ||y||) ∗-algebra in which the identity ||x∗|| = ||x|| is satisfied.
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The push and pull of linear operators. The isomorphism Q allows us to transport

C-linear operators between Σ and End(E). Given a linear operator O : Σ → Σ, define its

Berezin push OB : End(E) → End(E) via:

OB := Q ◦ O ◦ σ ⇔ Q ◦ O = OB ◦Q . (3.7)

Given a linear operator V : End(E) → End(E), define its Berezin pull though:

VB := σ ◦ V ◦Q ⇔ σ ◦ V = VB ◦ σ . (3.8)

The operations of Berezin push and pull are mutually inverse linear isomorphisms between

EndC(Σ) and EndC(End(E)). They are well-behaved with respect to the Berezin scalar

product on Σ in the sense that the following identities hold:

≺ f,O(g) ≻B = 〈Q(f),OB(Q(g))〉HS

〈C1,V(C2)〉HS = ≺ σ(f),VB(σ(g)) ≻B . (3.9)

In particular, the Berezin push of a ≺ , ≻B-Hermitian operator is 〈 , 〉HS-Hermitian and

the Berezin pull of a 〈 , 〉HS-Hermitian operator is ≺ , ≻B-Hermitian.

The squared two point function. For later reference, define the squared two-point

function Ψ ∈ C∞(X ×X,R) of coherent states:

Ψ(x, y) := tr(PxPy) = σ(Py)(x) = σ(Px)(y) =
|(ex|ey)|2

||ex||2||ey||2
≥ 0 . (3.10)

This function is symmetric and non-negative on X ×X:

Ψ(x, y) = Ψ(y, x) ∀x, y ∈ X

and vanishes at points (x, y) such that ex is orthogonal to ey. The vanishing divisor of Ψ

is known as the polar divisor [16].

Behavior under automorphisms. Recall that the group Aut(X,ω,L, h) acts linearly

on E (see eq. (2.3)). It is easy to check the relation:

ρ(γ−1)†(eq) = eγ(q) .

Let us assume that the action ρ is ( , )-unitary:

ρ(γ)† = ρ(γ)−1 .

Then the relation above becomes:

ρ(γ)(eq) = eγ(q)

and the Rawnsley projectors satisfy:

Pγ0(x) = ρ(γ)Pxρ(γ)
−1 . (3.11)
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In particular, the square two-point function (3.10) is invariant:

Ψ(γ0(x), γ0(y)) = Ψ(x, y)

and the Berezin symbol map is Aut(X,ω,L, h)-equivariant:

σ(ρ(γ)Cρ(γ)−1)(x) = σ(C)(γ−1
0 (x)) (C ∈ End(E)) .

If we let ρ̂ = ρ∗ ⊗C ρ be the representation induced by ρ on End(E):

ρ̂(γ)(C) = ρ(γ)Cρ(γ)−1 ,

then we can write the equivariance property above as follows:

σ ◦ ρ̂(γ) = τ(γ0) ◦ σ (γ ∈ Aut(X,ω,L, h)) . (3.12)

Here τ is the natural action of AutL,h(X,ω) on C∞(X):

τ(γ0)(f) = f ◦ γ−1
0 , (3.13)

which preserves the symbol space Σ = im σ as a consequence of (3.12):

τ(γ0)(Σ) = Σ .

We will sometimes view τ as a representation of Aut(X,ω,L, h) via the morphism

Aut(X,ω,L, h) → AutL,h(X,ω) (see (2.4)), without indicating this explicitly.

The properties above imply that the Berezin quantization map is equivariant as well:

ρ̂(γ) ◦Q = Q ◦ τ(γ0) (γ ∈ Aut(X,ω,L, h)) . (3.14)

Finally, the Berezin scalar product satisfies:

≺ τ(γ0)(f), τ(γ0)(g) ≻B=≺ f, g ≻B (f, g ∈ Σ, γ0 ∈ AutL,h(X,ω)) ,

which shows that the representation of AutL,h(X,ω) induced by τ on the invariant subspace

Σ ⊂ C∞(X) is unitary with respect to ≺ , ≻B. The Berezin trace (3.5) and the Berezin

product are also AutL,h(X,ω)-invariant:

∫∫
◦ τ(γ0) =

∫∫

and:

τ(γ0)(f) ⋄ τ(γ0)(g) = τ(γ0)(f ⋄ g) .
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3.3 Changing the scalar product in generalized Berezin quantization

Let us consider what happens when we change the scalar product. An arbitrary Hermitian

scalar product ( , )′ on E has the form:

(s, t)′ = (As, t) = (s,At) (3.15)

with A a ( , )-Hermitian positive-definite matrix.8 The coherent states with respect to the

new product ( , )′ are given by:

e′q = A−1eq (q ∈ Lx \ {0}) , (3.16)

while the new Rawnsley projectors take the form:

P ′
x =

1

σ(A−1)(x)
A−1Px (x ∈ X) . (3.17)

The symbol σ(A−1)(x) =
(eq|A−1|eq)

(eq |eq) of A−1 computed with respect to ( , ) and the symbol

σ′(A)(x) =
(e′q|A|e′q)′
(e′q|e′q)′ of A computed with respect to ( , )′ are related by:

σ(A−1)(x) =
1

σ′(A)(x)
. (3.18)

Notice that σ(A) and σ′(A) are strictly positive smooth functions on X. Given an operator

C, we have more generally:

σ′(C) =
σ(CA−1)

σ(A−1)
(3.19)

and:

σ(C) =
σ′(CA)

σ′(A)
. (3.20)

Let Q′ be the Berezin quantization map defined by ( , )′ and Σ′ ⊂ C∞(X) be the image of

σ′. Equation (3.19) shows that

Σ′ =
1

σ(A−1)
· Σ =

{
1

σ(A−1)
· f | f ∈ Σ

}

and that:

Q′(f) = Q(σ(A−1)f)A ∀f ∈ Σ′ .

Proposition. The Berezin quantizations defined by two different scalar products on E

agree iff the operator A is proportional to the identity, i.e. iff the two scalar products are

related by a constant scale factor. In this case, the coherent states differ by a constant

homothety and the coherent projectors are equal.

8Of course, A−1 and thus A are also Hermitian and strictly positive with respect to ( , )′.
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Proof. The quantizations will agree iff σ′(C) = σ(C) for all C ∈ End(E). Using re-

lation (3.20), this implies σ(CA) = σ(C)σ(A) for all C ∈ End(E). Taking the com-

plex conjugate and replacing C by B†, we also find σ(AB) = σ(A)σ(B) for all B. Thus

σ(AB) = σ(BA) for all B, which implies that A commutes with all operators on E since σ

is injective. Thus A = λidE (with λ > 0) by Schur’s Lemma, i.e. the two scalar products

differ by a positive constant rescaling. Conversely, it is clear that such a rescaling does not

affect the Berezin symbol map. The last statement follows from relations (3.16) and (3.17).

Remarks.

1. The Hermitian conjugate C⊕ of a linear operator C ∈ End(E) with respect to ( , )′

takes the form:

C⊕ = A−1C†A .

This allows one to check the identity (P ′
x)

⊕ = P ′
x by direct computation. The property

(P ′
x)

2 = P ′
x also follows directly from the definition of the symbol σ(A−1).

2. The operator I := A1/2 is an isometry from the Hilbert space (E, ( , )) to the Hilbert

space (E, ( , )′):
(Iu,Iv) = (u, v)′ . (3.21)

In general, this operator is non-local in x ∈ X. The operators P̃x := IPxI−1 =

A1/2PxA
−1/2 are orthoprojectors in (E, ( , )′), but they are not the Rawnsley pro-

jectors of ( , )′. The reason for this is that the coherent states with respect to the

latter scalar product have changed, and thus we have to ( , )′-orthoproject onto the

new coherent states. More generally, any invertible operator I ∈ GL(E) can be used

to define a new scalar product on E via (3.21). The decomposition C = UA with

A = (I†I)1/2 and U = IA−1 shows that (u, v)′ has the form (3.15) and that it de-

pends only on the positive operator A. Of course, the space of scalar products on E

can be identified with the homogeneous space U(N+1,C)\GL(N+1,C). Taking into

account the previous proposition, we find that the different Berezin quantizations as-

sociated with the line bundle L are parameterized by the points of the homogeneous

space (SU(N + 1,C) × C∗) \GL(N + 1,C).

3. We can also parameterize the new scalar product ( , )′ by the symbol a = σ(A−1),

i.e. by strictly positive smooth functions a ∈ Σ. Then different Berezin quantizations

based on L are parameterized by equivalence classes of such functions under rescaling

by a positive constant. We have Σ′ = 1
aΣ and Q′(f) = Q(af)Q(a) as well as Q′ ◦Φ =

Q, where the map Φ : Σ → Σ′ is given by Φ(f) = β(af)
a . Here, β is the Berezin

transform of the quantization with respect to the original scalar product ( , ) as

defined in section 3.7.

3.4 Integral representations of the scalar product

Let L, E = H0(L) and ( , ) be as above. Fixing a positive Radon measure µ on X,

we consider the problem of representing the scalar product ( , ) on E as the L2-product
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induced by µ and by a Hermitian metric h on the line bundle L. Such representations will

be used below when discussing generalized Toeplitz quantization.

Recall that any Hermitian bundle metric h on L can be parameterized by its epsilon

function relative to ( , ):

ǫ(x) := h(x)(q, q)||eq ||2 =
N∑

i,j=0

Gijh(x)(si(x), sj(x)) . (3.22)

Here, q is any non-zero vector in the fiber Lx, and the right hand side is independent

of the choice of q. We use the fact that the value h(x) of the metric on the fiber Lx is

uniquely determined by h(q, q). Conversely, any positive smooth function ǫ : X → (0,+∞)

determines a Hermitian metric on L via this formula, namely9 h(x)(q, q) = ǫ(x)
||eq||2 . This

parameterization allows us to describe Hermitian metrics on L through positive smooth

functions on X, provided that we have fixed a scalar product ( , ) on E.

The scalar product ( , ) on E coincides with the L2-product induced by µ and h if

and only if the following identity holds for any two holomorphic sections s, t of L:

(s, t) =

∫

X
dµ(x) h(x)(s(x), t(x)) .

It is easy to see that the right hand side equals
∫
X dµ(x)ǫ(x)(s|Px|t). This implies the

following:

Proposition. The scalar product ( , ) on E coincides with the L2-scalar product induced

by (µ, h) iff the relative epsilon function of the pair (h, ( , )) satisfies the identity

∫

X
dµ(x)ǫ(x)Px = idE , (3.23)

i.e. iff the coherent states defined by ( , ) form an overcomplete set with respect to the

measure µǫ = ǫµ.

Since the Berezin symbol map is injective, equation (3.23) is equivalent with the following

Fredholm equation of the first kind:

∫

X
dµ(y)Ψ(x, y)ǫ(y) = 1 (x ∈ X) .

Combining everything, we obtain:

Proposition. There exists a bijection between:

(a) pairs (µ, h) such that µ is a positive Radon measure on X and h is a Hermitian metric

on L

9The corresponding metric is well defined since ecq = c̄−1eq implies h(x)(cq, cq) = |c|2h(x)(q, q) for all

non-vanishing complex numbers c.
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(b) triples (µ, ( , ), ǫ) such that µ is a positive Radon measure on X, ( , ) is a Hermitian

scalar product on H0(L) and ǫ is a non-negative solution of the integral operator

equation (3.23), where Px are the Rawnsley projectors determined by the coherent

states defined by ( , ).

When the scalar product on E is fixed, equation (3.23) can be viewed as a constraint

on the pairs (µ, h) which allow for an integral representation of the scalar product. Taking

the trace shows that an epsilon function satisfying (3.23) is normalized to total mass N +1

with respect to the measure µ: ∫

X
dµ ǫ = N + 1 .

In particular, when ǫ is a constant function, then its value must be given by ǫ = N+1
µ(X) . Also

notice that equations (3.2) and (3.23) imply the following integral representation for the

trace on End(E):

tr(C) =

∫

X
dµ(x) ǫ(x)σ(C)(x) . (3.24)

Here σ is the Berezin symbol map defined by the scalar product ( , ).

If µ and the scalar product on E are fixed, condition (3.23) can be written in a basis of

E as a system of inhomogeneous linear integral equations for ǫ (which in turn determines

h): ∫

X
dµ ǫ(x)

q̂(si)q̂(sj)∑N
i,j=0G

ij q̂(si)q̂(sj)
= Gij . (3.25)

Taking the complex conjugate we see that only 1
2 (N + 1)(N + 2) of these equations are

independent. It is clear that (3.25) admits an infinity of solutions ǫ, so there is an infinity

of Hermitian metrics h on L which allow us to represent the scalar product ( , ) as an

L2-product with respect to µ. Each such metric h also defines an L2-scalar product on the

space Γ(L) of smooth sections by formula (2.1), which extends the given scalar product

on E. If we let L2(µ, h) be the Hilbert space obtained by completing Γ(L) with respect

to the associated norm, we find an isometric embedding of E into L2(µ, h). Hence any

solution of (3.25) provides a realization of H0(L) as a finite-dimensional subspace of an

infinite-dimensional Hilbert space.

Remark. When considering quantization with an integral representation of the scalar

product on the space of holomorphic sections, one has to deal with three different scalar

products on the space of functions. Indeed, the measure µ on X defines a scalar product

≺ ,≻ on C∞(X):

≺ f, g ≻:=

∫

X
dµf̄g , (3.26)

which extends to the natural scalar product on the space L2(X,µ).

On the other hand, the measure µǫ = µǫ appearing in the overcompleteness rela-

tion (3.23) defines its own L2-scalar product ≺ , ≻ǫ on C∞(X):

≺ f, g ≻ǫ=

∫
dµ ǫf̄g . (3.27)
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This extends to the natural scalar product of the space L2(X,µǫ). We have:

≺ f, g ≻ǫ:=≺ f,Mǫg ≻ ,

where Mψ : C∞(X) → C∞(X), Mψ(f) = ψf denotes the operator of multiplication with

a smooth function ψ. Notice that Mψ is ≺ , ≻-Hermitian when ψ is real valued, and

≺ , ≻-positive when ψ is everywhere positive.

Finally, the Berezin symbol space Σ carries the Berezin scalar product ≺ , ≻B , which

is induced from the Hilbert-Schmidt scalar product of End(E) via the Berezin quantization

map (see eq. (3.6)). Hence Σ is endowed with three different scalar products, namely the

Berezin product and the restrictions of the products (3.26) and (3.27). It is often the case

that various linear operators on Σ are self-adjoint with respect to one of these products

but not with respect to the others.

Equation (3.24) provides an integral representation of the Berezin trace:
∫∫
f = tr Q(f) =

∫

X
dµ(x)ǫ(x)f(x) (f ∈ Σ) , (3.28)

which in turns gives the following representation of the Berezin scalar product:

≺ f, g ≻B=

∫∫
f̄ ⋄ g = 〈Q(f), Q(g)〉HS =

∫

X
dµ(x)ǫ(x)(f̄ ⋄ g)(x) . (3.29)

3.5 The relative balance condition

Definition. We say that a scalar product on E is µ-balanced if equation (3.23) admits

the constant solution ǫ = N+1
µ(X) , i.e. if the following condition is satisfied:

∫

X
dµ(x)Px =

µ(X)

N + 1
idE .

Hence the scalar product is µ-balanced iff the matrix G satisfies the system of equations:

N + 1

µ(X)

∫

X
dµ

q̂(si)q̂(sj)∑N
i,j=0G

ij q̂(si)q̂(sj)
= Gij .

For a µ-balanced scalar product, the overcompleteness property of coherent states takes

the form N+1
µ(X)

∫
X dµPx = idE . The Hermitian metric h on L has epsilon function ǫ = N+1

µ(X)

and therefore is given by:

h(x)(q, q) =
N + 1

µ(X)

1

||eq||2
=
N + 1

µ(X)

1
∑N

i,j=0G
ij q̂(si)q̂(sj)

.

Let ωh be the L-polarized Kähler form on X determined by a Hermitian scalar product

h on L, and let µh := µωh
be the Liouville measure on X defined by ωh. We say that ( , )

is balanced if it is µh-balanced. This boils down to the system of equations:

N + 1

µh(X)

∫

X
dµh

q̂(si)q̂(sj)∑N
i,j=0G

ij q̂(si)q̂(sj)
= Gij ,

where h is determined by:

h(x)(q, q) =
N + 1

µh(X)

1
∑N

i,j=0G
ij q̂(si)q̂(sj)

.

This is the case considered in [15, 18], which was already mentioned in the previous section.
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3.6 Generalized Toeplitz quantization

Let us consider the case when ( , ) is the L2-scalar product on E determined by a fixed

measure µ on X and a Hermitian scalar product h on L. As we saw in the previous section,

this can always be achieved by some pair (µ, h). Consider the embedding E ⊂ L2(µ, h).

Since the scalar product on L2(µ, h) restricts to the original product on E, we will denote

it by the same symbol ( , ). Interpreting the coherent vectors eq as elements10 of E, the

orthogonal projector Px of E becomes the orthogonal projector Πx of L2(µ, h) onto the

one-dimensional subspace of L2(µ, h) defined by ex. Hence equation (3.23) becomes:

∫

X
dµ(x)ǫ(x)Πx = Π , (3.30)

where Π is the orthoprojector of L2(µ, h) onto E. We can now define the Toeplitz operator

T (f) ∈ End(E) associated to a smooth complex function f ∈ C∞(X):

T (f)(s) = Π(fs) ∀s ∈ E . (3.31)

Using equation (3.30), we find the integral expression:

T (f) =

∫

X
dµ(x)ǫ(x)f(x)Px .

The map T : C∞(X) → End(E) will be called the generalized Toeplitz quantization

defined by (L, µ, h). It satisfies T (f̄) = T (f)† and T (1X) = idE. Notice that T (f) depends

in an essential manner on the measure ǫµ, which is constrained only by condition (3.23).

One should contrast this with the generalized Berezin quantization, which is uniquely

determined by the scalar product ( , ). Since h characterizes L-polarized Kähler forms,

this quantization is useful for an amply polarized Hodge manifold (X,ω,L) endowed with

a natural measure µ. Two basic examples are when µ is the Kähler volume form or when

X is algebraically Calabi-Yau and µ is the volume form defined by the holomorphic top

form.

Behavior under automorphisms. Let us assume that the measure µ and the scalar

product ( , ) on E are invariant under the automorphism group of (X,ω,L, h) . Then it is

easy to see that the relative epsilon function (3.22) is AutL,h(X,ω)-invariant:

ǫ(γ0(x)) = ǫ(x) (γ0 ∈ AutL,h(X,ω)).

Together with relation (3.11), this shows that generalized Toeplitz quantization is Aut(X,

ω,L, h)-equivariant:

T ◦ τ = ρ̂ ◦ T ,

i.e.:

ρ(γ)T (f)ρ(γ)−1 = T (f ◦ γ−1
0 ) . (3.32)

10This means that we view the holomorphic sections of L as smooth sections of L, which in particular

are elements of L2(µ, h).
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3.7 Relation between generalized Berezin and Toeplitz quantization

Fixing the scalar product ( , ), we can consider the associated Berezin quantization as

well as any of the Toeplitz quantizations based on an integral representation of this scalar

product defined by a compatible pair (µ, h). The relation is given by the generalized Berezin

transform, the linear map β : C∞(X) → Σ defined through:

β := σ ◦ T ,

i.e.:

β(f)(x) =

∫

X
dµ(y) ǫ(y)Ψ(x, y)f(y) , (3.33)

where Ψ is the squared two-point function (3.10). Adapting an argument of [9], we obtain

the following:

Proposition. The linear maps T : C∞(X) → End(E) and σ : End(E) → C∞(X) are

adjoint to each other with respect to the scalar product ≺ , ≻ǫ on L2(X,µǫ) and the

Hilbert-Schmidt scalar product on End(E). In particular:

(1) T is surjective since σ is injective.

(2) The Berezin transform β = σ ◦ T : C∞(X) → C∞(X) is a ≺ , ≻ǫ-non-negative

Hermitian operator whose image coincides with Σ.

(3) We have kerT = kerβ = Σ⊥ǫ = {f ∈ C∞(X)| ≺ f, g ≻ǫ= 0 ∀g ∈ Σ} and thus

β(Σ) ⊂ Σ and T (Σ) = End(E).

Proof. We have:

〈T (f), C〉HS = tr(T (f)†C) = tr(T (f̄)C) =

∫

X
dµ(x)ǫ(x)f̄ (x)σ(C) =≺ f, σ(C) ≻ǫ .

If C is 〈 , 〉HS-orthogonal to imT , it follows that ≺ f, σ(C) ≻ǫ= 0 for all f ∈ C∞(X), which

implies σ(C) = 0. Therefore C = 0 by injectivity of σ. The rest is obvious. We also have:

Proposition. (cf. [9]) The Berezin operator β : C∞(X) → C∞(X) is a contraction with

respect to the sup norm ||f ||∞ = supx∈X |f(x)|, i.e.

||β(f)||∞ ≤ ||f ||∞ ∀f ∈ C∞(X) .

The proof is elementary and virtually identical with that in [9]. It follows that all

eigenvalues of β are contained in the interval [0, 1]. Notice that β has the form β = β|Σπ
where β|Σ is a positive contraction in the finite-dimensional subspace Σ and π is the

orthoprojector on Σ. Of course, β is also a contraction with respect to the L2-norm || ||ǫ
defined by the measure µǫ = ǫµ.

Since T = Q ◦ β, the Toeplitz quantization of f is related to the Berezin quantization

of β(f):

T (f) = Q(β(f)) .
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After restriction to Σ, we have a commutative diagram of bijections:

Σ
T |Σ−→ End(E)

β|Σ ↓ ‖
Σ

Q−→ End(E)

where β and T depend on the measure µǫ but Q and Σ depend only on the scalar product

( , ). Thus Toeplitz quantizations associated with different L2-representations of the scalar

product ( , ) on E give different integral descriptions of the Berezin quantization Q defined

by this product. Each Toeplitz quantization is equivalent with Q via the corresponding

Berezin transform.

Remark. When µ and ( , ) are AutL,h(X,ω) and Aut(X,ω,L, h)-invariant, respectively,

the equivariance properties of σ and T (see eqs. (3.12) and (3.14)) imply that the Berezin

map β = σ ◦ T commutes with the natural action of AutL,h(X,ω) on C∞(X):

β ◦ τ(γ0) = τ(γ0) ◦ β (γ0 ∈ AutL,h(X,ω)).

In this case, the epsilon function is constant and the action τ is unitary on C∞(X) with

respect to each of the L2-scalar products (3.26) and (3.27), while its restriction to Σ is also

unitary with respect to the Berezin scalar product.

3.8 The Berezin-Toeplitz lift of linear operators

Recall that the Toeplitz quantization map T is the Hermitian conjugate σ† of the Berezin

symbol map with respect to the scalar products 〈 , 〉HS and ≺ , ≻ǫ. This implies that the

Hermitian conjugate σ⊕ of the symbol map with respect to the scalar products 〈 , 〉HS and

≺ , ≻ is given by:

σ⊕ = T ◦M 1
ǫ
.

In particular, we find:

≺ σ(C1), σ(C2) ≻= 〈C1, (σ
⊕ ◦ σ)(C2)〉HS (C1, C1 ∈ End(E))

i.e.:

≺ f, g ≻= 〈Q(f), σ⊕(g)〉HS (f, g ∈ Σ) .

Let us fix a linear operator D : C∞(X) → C∞(X).

Definition. The Berezin-Toeplitz lift D̂ of D is the following linear operator on End(E):

D̂ := σ⊕ ◦ D ◦ σ = T ◦M 1
ǫ
◦ D ◦ σ : End(E) → End(E) .

Explicitly, we have:

D̂(C) =

∫

X
dµ(x)(Dσ(C))(x)Px (C ∈ End(E)) . (3.34)
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The operation of taking the Berezin-Toeplitz lift gives a linear surjection from

EndC(C∞(X)) to EndC(End(E)). The identities:

≺ σ(C1),Dσ(C2) ≻ = 〈C1, D̂(C2)〉HS (C1, C2 ∈ End(E))

≺ f,D(g) ≻ = 〈Q(f), D̂(Q(g))〉HS (f, g ∈ Σ) (3.35)

show that the Berezin-Toeplitz lift is well-behaved with respect to the L2-product ≺ , ≻
on functions defined by µ. This should be compared with eqs. (3.9) for the Berezin push

and pull. In particular, the Berezin-Toeplitz lift D̂ is 〈 , 〉HS-Hermitian when D is ≺ , ≻-

Hermitian and 〈 , 〉HS-positive when D is ≺ , ≻-positive.

The Berezin-Toeplitz lift of the identity operator idC∞(X) is given by:

ν := ̂idC∞(X) = σ⊕ ◦ σ = T ◦M 1
ǫ
◦ σ

and generally does not coincide with the identity operator on End(E). The integral ex-

pression (3.34) gives:

ν(C) =

∫

X
dµ(x)σ(C)(x)Px =

∫

X
dµ(x)Pxtr(PxC) .

Define the modified Berezin transform βmod = β ◦M 1
ǫ

: C∞(X) → Σ as follows:

βmod(f)(x) =

∫

X
dµ(y)Ψ(x, y)f(y) , (3.36)

where Ψ is the squared two-point function (3.10). This is obtained by formally replacing ǫ

with 1 in (3.33). Notice that imβmod = Σ.

Definition. The Berezin-Toeplitz transform D⋄ : Σ → Σ of D is the Berezin pull (3.8) of

D̂:

D⋄ := D̂B = σ ◦ D̂ ◦Q = β ◦M 1
ǫ
◦ D|Σ = βmod ◦ D̂|Σ . (3.37)

Explicitly, we have:

(D⋄f)(x) =

∫

X
dµ(y)Ψ(x, y)(Df)(y) (f ∈ Σ) .

The last equation in (3.35) shows that the bilinear form of D⋄ with respect to the

Berezin scalar product equals the bilinear form of D with respect to the L2-scalar product

induced by µ:

≺ f,D(g) ≻=≺ f,D⋄(g) ≻B (f, g ∈ Σ) .

In particular, D⋄ is ≺ , ≻B-Hermitian iff D is ≺ , ≻-Hermitian and ≺ , ≻B-positive iff

D is ≺ , ≻-positive. The Berezin-Toeplitz transform id⋄ = νB of the identity operator

idC∞(X) coincides with the modified Berezin transform:

id⋄ = βmod .
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3.9 Changing the scalar product in generalized Toeplitz quantization

Let us consider what happens when we change the scalar product on E while keeping h

and µ fixed. Equations (3.17) and (3.23) give:

∫

X
dµ(x)ǫ(x)σ(A−1)(x)P ′

x = A−1 , (3.38)

i.e.:

(s, t) =

∫

X
dµ(x)ǫ(x)σ(A−1)(x)

(s|e′q)′(e′q|t)′
(e′q|e′q)′

,

where the scalar product (s, t) on the left hand side is the original (unprimed) product.

Relations (3.15), (3.16) and (3.22) show that the epsilon function of the pair (h, ( , )′) is

given by:

ǫ′(x) = ǫ(x)σ(A−1) , (3.39)

so (3.38) takes the form: ∫

X
dµ(x)ǫ′(x)P ′

x = A−1 ,

which allows us to express the original scalar product as:

(s, t) = (s,A−1t)′ =

∫

X
dµ(x)ǫ′(x)(s|P ′

x|t)′ =

∫

X
dµ(x)ǫ′(x)

q̂(s)q̂(t)

(e′q |e′q)′
.

The original epsilon function can be recovered from equations (3.39) and (3.18):

ǫ(x) = σ′(A)ǫ′(x) ,

while the original Rawnsley coherent states can be recovered as eq = Ae′q. In principle,

this allows us to recover the original Toeplitz quantization from knowledge of ( , )′. We

can define an operator:

T ′(f) :=

∫

X
dµ(x)ǫ′(x)f(x)P ′

x ,

which satisfies T ′(f)⊕ = T (f̄) as well as:

tr(AT ′(f)) =

∫

X
dµ(x)ǫ(x)f(x) = tr(T (f))

and:

T ′(1X) = A−1 .

In practice, one is often interested in the case when ( , ) is the L2-scalar product 〈 , 〉µ,h1

defined by µ and h:

(s, t) := 〈s, t〉µ,h1 =

∫

X
dµ(x)h(x)(s(x), t(x)) .

In such a situation one might be able to compute the coherent states and epsilon function

with respect to another scalar product ( , )′ on E. Then the expressions above allow one

to recover the Toeplitz quantization with respect to the L2-scalar product of (µ, h).
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We can also ask about relating the Berezin quantization Q′ defined by ( , )′ to the

Toeplitz quantization defined by the L2-scalar product 〈 , 〉µ,h1 . The two quantizations are

related by the map β := σ′ ◦ T : C∞(X) → Σ′:

T (f) := Q′(β(f)) .

We have the integral expression

β(f)(x) =

∫

X
dµ(y)ǫ(y)f(y)λ(x, y) ,

where λ(x, y) = σ′(Py)(x) =
σ(A−1Py)(x)
σ(A−1)(x) =

tr(A−1PyPx)
tr(A−1Px) = σ(A−1(y))

σ(A−1(x))σ(P ′
y(x)). Notice that

λ(x, y) need not equal λ(y, x).

3.10 Extension to powers of L

We can easily extend everything by replacing the very ample line bundle L with any of its

positive powers Lk := L⊗k (k ≥ 1). In this case, generalized Berezin quantization requires

a choice of Hermitian scalar products ( , )k on each of the finite-dimensional vector spaces

Ek := H0(Lk). Accordingly, we have coherent states e
(k)
x ∈ Ek and Rawnsley projectors

P
(k)
x , as well as surjective Berezin symbol maps σk : End(Ek) → C∞(X) whose images

we denote by Σk. The inverse of the corestrictions σk|Σk define a sequence of Berezin

quantization maps Qk : Σk → End(Ek). The entire construction depends crucially on the

precise sequence of Hermitian scalar products ( , )k chosen for the spaces Ek.

4. Classical Berezin and Toeplitz quantization of compact

Hodge manifolds

Classical Berezin and Toeplitz quantization of prequantized Hodge manifolds (X,ω, L, h)

arises as a particular case of the generalized constructions discussed above. In the classical

set-up, one fixes an integer k0 such that Lk0 is very ample. For each integer k ≥ k0, we

apply the general construction for the ample line bundle Lk endowed with the Hermitian

scalar product hk := h⊗k and with the L2-scalar product 〈 , 〉k on Ek := H0(Lk) induced

by hk and by the Liouville measure µω defined by ω, see eq. (2.2).

4.1 Classical Berezin and Toeplitz quantization

Applying Berezin quantization with the choices above leads to bijective symbol maps σk :

Ek → Σk ⊂ C∞(X) and quantization maps Qk : Σk → End(Ek). We also have surjective

Toeplitz quantization maps Tk : C∞(X) → End(Ek) given by Tk(f) := Πk(f ·), where

Πk : L2
k(L, h, µω) → Ek is the orthoprojector on the subspace of holomorphic sections. The

surjective Berezin transforms βk = σk ◦ Tk : C∞(X) → Σk relate the two quantizations via

Tk = Qk ◦ βk. The maps βk and Tk have equal kernel Σ
⊥ǫk

k ⊂ C∞(X) and the restrictions

of βk and Tk give linear isomorphisms. For each k ≥ k0, we have a commutative diagram

of bijections:

Σk
Tk |Σ−→ End(Ek)

βk|Σ ↓ ‖
Σk

Qk−→ End(Ek)
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where βk|Σk
is a strictly positive self-adjoint contraction.

It is convenient to consider the Hilbert space:

EX := ⊕∞
k=0(Ek, 〈 , 〉k) . (4.1)

Recall that the completed direct sum EX consists of all infinite sequences s =
∑∞

k=0 sk with

sk ∈ Ek which satisfy the condition:

∞∑

k=0

〈sk, sk〉k <∞ .

It is endowed with the scalar product:

〈s, t〉X =
∞∑

k=0

〈sk, tk〉k . (4.2)

Then the Ek become closed subspaces of EX and the scalar products 〈sk, tk〉k coincide with

the restriction of 〈 , 〉X .

Similarly, we let Hk := L2
k(L

k, µ, h) be the L2-completion of Γ(Lk) and HX := ⊕∞
k=0Hk

be the Hilbert direct sum ofHk. Then EX is a closed subspace in HX and the orthoprojector

Π on the former decomposes as:

Π =
∞∑

k=0

Πk , (4.3)

where Πk is the orthoprojector on Ek inside Hk. The projector (4.3) is sometimes called

the Szegö projector.

Remark. Consider the total space S of the unit circle bundle of L∗. This is a Cauchy-

Riemann (CR) manifold of CR-codimension one, whose CR-structure is induced by its

obvious embedding as a real hypersurface in the total space L of L∗. Moreover, it is the

boundary of the total space D of the unit disk bundle of L∗, which is known to be a strictly

pseudoconvex domain in L. The Kähler form ω of X induces a contact one-form α on S

such that the pull-back of ω through the projection of the circle bundle equals dα. The

Hardy space is the Hilbert space of all CR-holomorphic functions on S, endowed with the

L2-scalar product induced by the volume form α∧ (dα)dimX of the contact form α. This is

the usual Hardy space of boundary values of holomorphic functions on the domain D. It is

well-known that the Hardy space is isometric to the Hilbert space EX . Because of this, we

will identify the two and sometimes refer to the latter as the Hardy space. Similarly, the

space of L2-functions on S identifies with HX .

4.2 The formal star products and associated deformation quantizations

Let { , } be the Poisson bracket defined by ω, h be a formal variable and consider the C[[h]]-

module C∞(X)[[h]] of formal power series with smooth function coefficients. Recall that a

normalized formal star product on X is a C[[h]]-bilinear map ⋆ : C∞(X)[[h]]×C∞(X)[[h]] →
C∞(X)[[h]] on this module such that:
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(a) ⋆ is associative

(b) The coefficients of the formal expansion:11

f ⋆ g =

∞∑

n=0

hjCj(f, g) (f, g ∈ C∞(X))

are bi-differential operators satisfying the identities:

1. C0(f, g) = fg

2. C1(f, 1) = C1(1, f) = 0

3. C1(f, g) − C1(g, f) = i
2π{f, g}

Notice that we use an expansion in h rather than ~ = h
2π due to our convention for integral

symplectic forms ([ω] ∈ H2(X,Z)), as required by agreement with the Bohr-Sommerfeld

condition.

The Toeplitz deformation quantization. It was shown in [10] that there exists a

unique normalized formal star product ⋆T on X (known as the Toeplitz star product)

whose coefficients Cj have the property:

||Tk(f)Tk(g) −
N∑

j=0

1

kj
Tk(Cj(f, g))||k = Kp(f, g)

1

kN

for all m and all sufficiently large k. Here, || ||k is the operator norm on End(Ek) and the

Kp(f, g) are constants which depend only on p and f, g. This can be interpreted as an

asymptotic expansion:

Tk(f)Tk(g) ∼
∞∑

j=0

1

kj
Tk(Cj(f, g)) for k → ∞ , (4.4)

where the right hand side formally corresponds to Tk(f ⋆T g) at h = 1
k (here h = 2π~).

It should be stressed that the formal star product ⋆T captures the entire asymptotic ex-

pansion (4.4), which includes information from all values of k ≥ k0. The Toeplitz star

product has ‘anti-separation of variables’ in the sense that a ⋆T g = f ⋆T b = 0 whenever a

is antiholomorphic and b is holomorphic.

Remark. One has [6]:

||Tk(f)Tk(g) − Tk(fg)||k = O

(
1

k

)
for k → ∞

as well as:

||ik[Tk(f), Tk(g)] − Tk({f, g})||k = O

(
1

k

)
for k → ∞

11Notice that these completely determine the star product.
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and:

||f ||∞ − Cf
k

≤ ||Tk(f)||k ≤ ||f ||∞

for all f ∈ C∞ and some constant Cf depending only on f . In particular, one finds

limk→∞ ||Tk(f)|| = ||f ||∞. These properties imply that the continuous field of C∗-algebras

on the set I = { 1
k |k ∈ N∗} ∪ {0} given by A 1

k
:= (Σk, || ||k), with A0 := (C∞(X), || ||∞)

and section 1
k → Tk, T0 := idC∞(X) forms a ‘strict quantization’ in the sense of Rieffel [22]

though not a ‘strict deformation quantization’.

The Berezin deformation quantization. It was further shown in [12] that the Berezin

transform βk has an asymptotic expansion βk ∼
∑∞

r=0
1
krβr with β0 = 1. This allows one

to define an automorphism of the C[[h]]-module C∞(X)[[h]], known as the formal Berezin

transform, via:

β =
∞∑

r=0

βrh
r . (4.5)

The Berezin star product ⋆B is the formal normalized star product obtained from ⋆T via

the formal Berezin transform, f ⋆B g = β(β−1(f) ⋆T β−1(g)). Again, it should be stressed

that ⋆B contains information from all powers Lk, k ≥ k0. We have the relation:

β(f ⋆T g) = β(f) ⋆B β(g) .

The Berezin star product has ‘separation of variables’ in the sense of [11], i.e. one has

a ⋆B g = f ⋆B b = 0 whenever a and b are holomorphic and antiholomorphic functions,

respectively [8].

4.3 Relation with geometric quantization

In Konstant-Souriau geometric quantization of Kähler manifolds [21], one considers the

linear maps Θk : C∞(X) → End(Ek) given by:

Θk(f) := Πkθk(f) , (4.6)

where

θk(f) := −i∇(k)

Xk
f

− f · .

Xf is the Hamiltonian vector field defined by the smooth function f with respect to the

symplectic form kω and ∇(k) is the Chern connection on Lk. This procedure corresponds

to using the so-called complex polarization. One has the following relation [25]:

Θk(f) = Tk

(
f − 1

2k
∆f

)
∀f ∈ C∞(X) ,

where ∆ is the Laplace operator of (X,ω) — at least on compact symmetric spaces. Notice

that we use conventions in which Θk(f)† = Θk(f̄).

– 29 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
9

4.4 The Berezin product or coherent state star product

In the vast majority of the literature on fuzzy geometry, the “star product” used is the

Berezin product ⋄k : Σk × Σk → Σk introduced in section 3.2:

f ⋄k g := σk(Qk(f)Qk(g)) , f, g ∈ Σk . (4.7)

This product is also called the coherent state star product, as σk(C) = tr(CP
(k)
x ) is deter-

mined by the coherent states. It is associative by definition and the algebra (Σk, ⋄k, )̄ is

isomorphic as a ∗-algebra to (End(Ek), ◦, †) with the Berezin quantization map Qk provid-

ing the isomorphism.

Note that the Berezin product is not a formal star product as it is defined only on Σk,

instead of C∞(X)[[h]]. However, it has been shown [5] that in the case of flag manifolds,

there is a formal differential star product on the set Σ• :=
⋃∞
k=0 Σk, which agrees with the

asymptotic expansion of the Berezin products on Σk for certain h = 1
k .

As an example, consider the Berezin quantization of (Pn, ωFS) with the prequantum line

bundle Hk, where H is again the hyperplane line bundle. If we normalize the homogeneous

coordinates on Pn by demanding that |z| = 1, we obtain the particularly simple form [28]:

f ⋄k g =
∑

i1,...,ik

(
1

k!

∂

∂zi1
. . .

∂

∂zik
f

)(
1

k!

∂

∂z̄i1
. . .

∂

∂z̄ik
g

)
.

A different form of the Berezin product corresponding to a finite sum resembling the first

terms in an expansion of a formal star product can be written down in the real setting,

using the embedding Pn→֒R(n+1)2−1 [17].

4.5 The quantization of affine spaces

Classical Berezin-Toeplitz quantization can be extended to the non-compact case12 upon

replacing the space of holomorphic sections of the quantum line bundle L with the subspace

of those holomorphic sections which are square integrable with respect to an appropriately

weighted version of the Liouville measure ωn

n! . In particular, this can be applied to the

case of complex affine spaces, where the weight is provided by the global Kähler potential,

leading to the well-known construction of the Bargmann representation of the bosonic Fock

space. In this subsection, we recall this construction in order to fix our notations for later

use.

Let us start with a few remarks about the coordinate-free description. If V is an n+1-

dimensional complex vector space, the algebra B := C[E] of polynomial functions over the

dual space E := V ∗ = HomC(V,C) is the symmetric algebra associated with V :

B = C[E] = ⊕∞
k=0E

⊙k = ⊕∞
k=0(V

∗)⊙k . (4.8)

We let Bk := E⊙k ⊂ B. As an algebraic variety, the affine space over V is the affine

spectrum A(V ) = SpecB of this algebra. A choice of basis e0 . . . en for V allows us to

define coordinate functionals zj ∈ E = HomC(V,C) such that zj(v) = vj for all v =

12In fact, historically this was the original class of examples.
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∑n
j=0 vjej ∈ V . Thus (zj) is the basis of E dual to the given basis of V . Once a basis of

V has been fixed, we can write the elements of B as polynomial functions over V :

f =
∑

|p|=bounded

apχp ,

where p = (p0 . . . pn) ∈ Nn+1, |p| :=
∑n

j=0 pj and:

χp := zp := zp00 . . . zpn
n . (4.9)

We denote the symmetrized tensor product ⊙ by juxtaposition. As a function on V , we

have:

f(v) =
∑

|p|
apv

p0
0 . . . vpn

n .

If we use the given basis to identify V with Cn+1, then v identifies with the vector (v0 . . . vn)

and we obtain the polynomial function f(v0 . . . vn) =
∑

|p| apv
p0
0 . . . vpn

n on Cn+1. In this

case, B identifies with the polynomial algebra C[v0 . . . vn] in n + 1 variables, which is the

coordinate ring of Cn+1.

Given a Hermitian scalar product ( , ) on E, we have an induced product on V (denoted

by the same symbol) and can chose the basis e0 . . . en to be orthonormal with respect to

this induced product. In this case, the basis z0 . . . zn of E is also orthonormal and the

scalar product of two elements of V can be written as:

(u, v) = z̄(u) · z(v) =
n∑

j=0

zj(u)zj(v) =
n∑

j=0

ujvj ,

where z(v) := (z0(v) . . . zn(v)) = (v0 . . . vn). Notice that ||v||2 = |z(v)|2 =
∑n

j=0 |zj(v)|2.
The scalar product induces a flat Hermitian metric on V whose Kähler form:

ω =
i

2π

n∑

j=0

dzj ∧ dz̄j

corresponds to the standard symplectic form on the underlying real vector space VR of V

if we set zj = 1√
2
(qj + ipj), where qj, pj ∈ HomR(V,R) are real coordinates on VR:

ω =
1

2π

n∑

j=0

dqj ∧ dpj .

Since ωn+1

(n+1)! = 1
(2π)n+1 dq0 ∧ dp0 ∧ . . . ∧ dqn ∧ dpn, the associated Liouville measure is the

scaled Lebesgue measure dµ = 1
(2π)n+1 d

n+1qdn+1p on VR. The Kähler form is polarized

with respect to the trivial line bundle O = V × C, whose unit section we denote by s0 = 1

(this is just the unit constant function on V ). O becomes a quantum line bundle when

endowed with the Hermitian metric h given by:

ĥ(v) := h(v)(s0(v), s0(v)) := e−|z(v)|2 = e−||v||2 .
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The unit section gives the global Kähler potential:

K(v) = − log ĥ(v) = |z(v)|2 = ||v||2 .

The holomorphic sections of O are simply the entire functions f on V , since every such

section can be written as sf = fs0. The L2-scalar product (subsequently to be referred to

as the Bargmann product) is:

〈f, g〉B := 〈sf , sg〉 =

∫

V
dµ(v)e−|z(v)|2 f̄(v)g(v) =

∫

V
dν(v)f̄(v)g(v) , (4.10)

where:

dν(v) = e−|z(v)|2dµ(v) =
1

(2π)n+1
e−

1
2

Pn
j=0 (q2j +p2j ) dn+1qdn+1p

is the weighted Lebesgue measure, which is normalized to unit total mass:

∫

V
dν = 1 .

The space of square integrable holomorphic sections of O is the well-known weighted

Bargmann space B(V ) := L2
hol(V, dν) of ν-square integrable entire functions on V , which

contains the algebra B = C[E] of polynomial functions as a dense subspace. The Bargmann

space carries the unitary representation of the n+ 1-th Weyl group with creation and an-

nihilation operators given by:

(â†if)(v) := zi(v)f(v) , (âif)(v) = ∂if(v) ,

where ∂i = ∂
∂ei

is the directional derivative along ei. We have:

[âi, â
†
j ] = δij .

The normalized vacuum vector is the constant unit function |0〉 := 1. For every tuple

p = (p0 . . . pn) ∈ Nn+1, let p! := p0! . . . pn!. We have:

||χp||B =
√

p! , (4.11)

where χp are the monomials (4.9). The normalized occupation vectors are given by:

|p〉 =
1√
p!
χp =

(â†)p√
p!

|0〉 . (4.12)

They are the common eigenvectors of the particle number operators N̂i = â†i âi:

N̂i|p〉 = pi|p〉 .

An entire function:

f =
∑

p∈Nn+1

cpχp =
∑

p∈Nn+1

cp
√

p!|p〉 (cp ∈ C) (4.13)
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belongs to B iff

〈f |f〉B =
∑

p∈Nn+1

p!|cp|2 <∞ .

Defining the total particle number operator N̂ =
∑n

i=1 N̂i, relation (4.12) shows that

its eigenspace of eigenvalue k coincides with Bk. We have the orthogonal decomposition

B = ⊕∞
k=0Bk (completed direct sum) with Bk = ker(N̂ − k). It is easy to see that B

is unitarily isomorphic with the bosonic Fock space Fs(E) = ⊕∞
k=0E

⊙k over the finite-

dimensional Hilbert space (E, ( , )). Under this identification, |p〉 becomes the orthonormal

basis of the Fock space canonically associated with the orthonormal basis (z0 . . . zn) of E.

Since O has a global nowhere vanishing section (the unit section s0), we can consider

Rawnsley’s coherent vectors with respect to q = s0(v) = 1 ∈ Ov. These are the usual

Glauber vectors:

|v〉 = e
Pn

i=0 v̄iâ
†
i |0〉 =

∑

p

vp√
p!

|p〉 ,

where vp = v0
p0 . . . vn

pn . One has the well-known identity:

f(v) = 〈v|f〉B (f ∈ B) .

We have:

âi|v〉 = v̄i|v〉 , 〈u|v〉B = e(v,u) .

In particular |v〉 has norm e||v||
2
. The reproducing kernel is the well-known Bergman kernel:

KB(u, v) =
〈u|v〉√

〈u|u〉〈v|v〉
= e−

1
2
(|u|2+|v|2)+(v,u) .

The Rawnsley projector is13 Pv = 1
〈v|v〉B |v〉〈v|B = e−||v||2|v〉〈v|B . The epsilon function is

constant and equal to one:

ǫCn+1 = ĥ(v)〈v|v〉B = 1 .

The decomposition of the identity takes the form:
∫

V
dµ(v)Pv = 1 ⇔

∫

V
dµ(v)e−||v||2 |v〉〈v|B = 1 ⇔

∫

V
dν(v)|v〉〈v|B = 1 .

Toeplitz quantization of A(V ). The Toeplitz quantization of f ∈ C∞(V,C) is given

by:

T (f) =

∫

V
dµ(v)f(v)Pv =

∫

V
dµ(v)e−||v||2f(v)|v〉〈v|B . (4.14)

In particular, we have T (zi) = â†i and T (z̄i) = âi. When f is a polynomial in z and z̄, (4.14)

obviously reduces to the anti-Wick prescription:

T (f) =
...f(â†, â)

... ,

where the triple dots indicate antinormal ordering. In this case, T is not surjective due to

the infinite-dimensionality of the Bargmann space.

13Recall that 〈v|B stands for the linear functional 〈v|B(ψ) := 〈v|ψ〉B which is Riesz dual to the vector |v〉.

Since Riesz duality depends on the choice of scalar product on B, we use an underscript B on bra vectors.
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Berezin quantization of A(V ). The Berezin symbol map σ : L(B) → C∞(V,C) is

defined on the algebra L(B) of bounded operators in the Bargmann space. The symbol of

a bounded operator C takes the form:

σ(C)(v) = e−||v||2〈v|C|v〉B ,

while the Berezin transform β(f) = σ ◦ T is given by:

β(f)(u) =

∫

V
dµ(v)f(v)e−||u−v||2 .

Thus β = 1
2n+2 e

−4∆, where ∆ is the Laplacian on VR; this is the heat kernel up to normal-

izations.

The symbol map gives rise to the Berezin quantization Q : Σ → L(B), where Σ ⊂
C∞(Cn+1) is the image of σ. We have Q(zi) = â†i and Q(z̄i) = âi. For a polynomial

function f(z, z̄), we find:

Q(f) =: f(â†, â) : ,

where the double dots indicate normal ordering. Hence both quantization prescriptions

send zi into â†i and z̄i into âi, but Toeplitz quantization corresponds to anti-Wick ordering,

while Berezin quantization corresponds to Wick ordering.

Truncated coherent vectors. For later use, consider the expansion of Glauber’s co-

herent vectors in components of fixed total particle number:

|v〉 =

∞∑

k=0

|v, k〉 ,

where the ‘truncated coherent vectors’

|v, k〉 :=
1

k!

(
n∑

i=0

v̄iâ
†
i

)k
|0〉 =

∑

|p|=k

v̄p√
p!

|p〉

satisfy

N̂ |v, k〉 = k|v, k〉

〈u, k|v, l〉B = δk,l
1

k!
[(v, u)]k .

In particular, we have 〈v, k|v, k〉B = 1
k! ||v||2k . Since [N̂ , âi] = −1 and [N̂ , â†i ] = +1, we find:

âi|v, k〉 = z̄i|v, k − 1〉 . (4.15)

Notice that |λv, k〉 = λ̄k|v, k〉 for any λ ∈ C, and therefore the ray C∗|λv, k〉 depends only

on the image [v] of v in the projective space PV = (V \ {0})/C∗.
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4.6 The quantization of complex projective spaces

We next consider the case of complex projective spaces, which has been studied exten-

sively in the literature on Berezin quantization. Using the ‘truncated coherent vectors’ of

the previous subsection, we will show that the (yet to be defined) Berezin-Bergman quan-

tization of Pn coincides with its Berezin quantization. In particular, the fuzzy version of

Pn considered in [1] coincides with its well-known Berezin quantization.14 To make contact

with the formalism used in [1], we will use the fact that the homogeneous coordinate ring

of Pn can be identified with the affine coordinate ring of Cn+1, provided that the latter is

endowed with the canonical grading degzi = 1. It follows that both the Bargmann space of

Cn+1 and the Hardy space of Pn are Hilbert space completions of the ring of polynomials

in n complex variables, albeit with respect to different scalar products: the former uses

the scalar product induced by the flat metric on Cn+1, while the latter uses the scalar

product induced by the Fubini-Study metric on Pn. According to our general discussion,

the relation between the restriction of these scalar products to Bk should be provided by

isomorphisms Ak which relate the Berezin quantizations of Cn+1 and Pn. In the case at

hand, Ak will be proportional to 1Bk
, with a k-dependent proportionality constant. This

implies that the Berezin quantizations of Pn and Cn+1 agree at any fixed level k. Such an

extremely simple relation is not to be expected in general, but is a consequence of the fact

that Pn is a homogeneous space, which is why any reasonable quantization procedure for

this space leads to the same result.

Consider an n+ 1-dimensional complex vector space V and its dual E = V ∗ as in the

previous subsection. As an algebraic variety, the projective space PV = (V \ {0})/C∗ over

V is given by ProjB, where B = C[E] is viewed as a graded algebra with respect to the

obvious grading. For any vector v ∈ V , we let [v] be the corresponding point in PV . Recall

that the tautological bundle τ := OP(V )(−1) has a fiber equal to the line τv = Cv ⊂ V

above the point [v] ∈ PV . The dual bundle H := OP(V )(1) is the hyperplane bundle,

which is very ample. Any functional s ∈ Bk = (V ∗)⊙k determines and is determined by a

holomorphic section S ∈ H0(Hk), namely:

S([v]) = s|τ⊗k
v

∈ (τ∗v )⊙k ,

so H0(Hk) identifies with Bk. Hence the graded algebra B identifies with the homogeneous

coordinate ring ⊕∞
k=0H

0(Hk) of PV with respect to H. In particular, H0(H) identifies with

B1 = E.

As in the previous section, a basis (e0 . . . en) of V determines coordinate functionals

zj ∈ E. The corresponding holomorphic sections Zj ∈ H0(H) are the homogeneous coor-

dinates of PV associated with the given basis. The homogeneous polynomials (4.12) for

|p| = k provide a basis for Bk. We have:

dimBk = Nk + 1 =
(n + k)!

n!k!
.

Fixing a scalar product ( , ) on E, we have an induced scalar product on V and take

the basis (ej) to be orthonormal. We endow the hyperplane bundle with the Hermitian

14In particular, the fuzzy two-sphere of [26] is simply the classical Berezin quantization of P
1.
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metric hFS specified by:

hFS([v])(Zj([v]), Zj([v])) =
|zj(v)|2
|z(v)|2 =

|vj|2
||v||2 . (4.16)

The associated Kähler metric on PV is the Fubini-Study metric determined by ( , ), whose

Kähler form is given by:

ωFS([v]) =
i

2π
∂∂̄ log |z(v)|2 =

i

2π
∂∂̄ log ||v||2 .

We endow Hk with the tensor product metric hkFS = h⊗kFS , which satisfies:

hkFS([v])(S([v]), S([v])) =
|s(v)|2
||v||2k ∀s ∈ Bk .

As measure on PV , we use the Liouville measure of the volume form
ωn

FS
n! . In particular,

we have:

volωFS
(PV ) =

1

n!
.

The space H0(Hk) = Bk carries the associated L2-product:

〈s1, s2〉k := 〈S1, S2〉h
k
FS
k =

∫

PV

ωnFS

n!
hkFS(S1, S2) . (4.17)

The monomials χp (such that |p| = k) provide an orthogonal but not orthonormal basis

of Bk with respect to this product. Direct computation gives:

||χp||k =

√
p!

(n+ k)!
(|p| = k) .

Comparing with (4.11), we find:

||χp||k
||χp||B

=
1√

(n + k)!
(|p| = k) .

where ||χp||B is computed with respect to the scalar product of the Bargmann space

B(Cn+1). It follows that the Hardy product of the projective Hilbert space (PV, ωFS)

is related to the Bargmann product by a constant rescaling:

〈s, t〉k =
1

(n+ k)!
〈s, t〉B ∀s, t ∈ Bk . (4.18)

Let (E(PV ), 〈 , 〉PV ) = ⊕∞
k=0(Bk, 〈 , 〉k) denote the Hardy space of PV . It can be identified

with the space of those entire functions (4.13) on V whose coefficients satisfy:

〈f |f〉PV =
∑

p∈Nn+1

p!

(n+ |p|)! |ap|
2 <∞ .
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Since (n + p)! ≥ 1, we can view B(V ) as a closed subspace of E(PV ). (Of course, the

Bargmann scalar product does not agree with the restriction of the Hardy product.) The

operator W : E(PV ) → B(V ) ⊂ E(PV ) given by:

(Wf)(z) =
∑

p∈Nn+1

√
(n+ |p|)!apzp (4.19)

provides an isometry between (E(PV ), 〈 , 〉PV ) and (B(V ), 〈 , 〉B). Defining A := W 2, we

have Ak := A|Bk
= (n+ |p|)!1Bk

and:

〈s, t〉PV = 〈As, t〉B .

Since PV is a homogeneous space, its coherent states can be extracted by the well-

known method due to Perelomov [27]. The unitary group U(V ) of the Hermitian vector

space (V, ( , )) acts unitarily on Bk via Ûk(f)(v) = f(U−1v), i.e. Ûk|v, k〉 = |Uv, k〉.
The representation is irreducible and isomorphic with the k-fold symmetric representation.

One can construct Perelomov coherent states [27] of this action as orbits of a given non-

vanishing state in the projective Hilbert space P(Bk). Let us start with the state defined

by the vector |v0, k〉 ∈ Bk, where v0 is any fixed non-vanishing vector of V . Then the

ray C∗|v0, k〉 ∈ Bk has stabilizer U(v⊥0 ) × U(1) in U(V ). It follows that the Perelomov

states are parameterized by points of the homogeneous space U(V )/(U(v⊥0 )×U(1)), which

coincides with PV . Since Ûk|z0, k〉 = |Uz0, k〉, the Perelomov state at [z] coincides with the

ray C∗|z, k〉. Hence Perelomov’s coherent projectors take the form:

P
(k)
[v] :=

|v, k〉〈v, k|B
〈v, k|v, k〉B

= k!
|v, k〉〈v, k|B

||v||2k . (4.20)

These projectors are unaffected by the constant rescaling of the scalar product when trans-

lating between the Bargmann and Hardy metrics on Bk. Since the Fubini-Study metric is

invariant on the homogeneous space PV , the Liouville form determined by its volume form
ωn

FS
n! provides an invariant measure. Thus Perelomov’s theory implies the overcompleteness

property:
Nk + 1

vol(PV )

∫

PV

ωnFS

n!
P

(k)
[v] = Pk , (4.21)

where Pk is the orthoprojector on Bk in B(V ) and the normalization constant in front of

the integral has been identified by taking the trace. Since both Rawnsley’s and Perelomov’s

coherent projectors satisfy (4.21), they determine a reproducing kernel for Bk, so they must

agree with each other if one uses scalar products on this space differing only by a constant

rescaling. It follows that the P
(k)
[v] coincide with the Rawnsley projectors of (Bk, 〈 , 〉k)

while the rays C∗|v, k〉 are Rawnsley’s coherent states. Rawnsley’s coherent vectors take

the form:

e(k)v = (n+ k)!|v, k〉 (v ∈ E \ {0}) , (4.22)

where the prefactor is due to relation (4.18) between the Hardy and Bargmann scalar

products. The reproducing kernel for (Bk, 〈 , 〉k) is given by:

Kk(u, v) = 〈e(k)u |e(k)v 〉k = (n+ k)!〈u, k|v, k〉B =
(n+ k)!

k!
(u · v̄)k .
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The epsilon function is constant:

ǫPVk =
Nk + 1

vol(PV )
=

(n+ k)!

k!
. (4.23)

In particular, we recover the well-known fact that kωFS is balanced for all k. The over-

completeness property (4.21) can also be written as:

(n+ k)!

∫

X

ωnFS

n!

|v, k〉〈v, k|B
||v||2k = Pk ,

where we used vol(PV ) = 1
n! and the identity k!(Nk + 1) = (n+k)!

n! .

It will prove convenient to consider the functions:

fIJ :=
z̄IzJ

|z|2m =
z̄i00 . . . z̄inn z

j0
0 . . . zjnn

|z|2m ∈ C∞(PV,C) , (4.24)

where I = (i0 . . . in), J = (j0 . . . jn) ∈ Nn+1 and |I| = |J | = m and where we set fIJ = 1 for

m = 0. The linear span S(PV ) over C of these functions is a unital ∗-subalgebra of the C∗-
algebra (C∞(PV ), || ||∞) (recall that || ||∞ is the sup norm). Let Sm(PV ) be the subspace

spanned by those fIJ with |I| = |J | = m (notice that S0 = C). The set of functions (4.24)

with a fixed m gives a basis for Sm(PV ) so in particular we have dimCSm(PV ) = Nm + 1.

For any l = 0 . . . n, let ∆l ∈ Nn+1 be given by ∆l(i) = δil. The obvious relation:

fIJ =
n∑

l=0

fI+∆l,J+∆l

shows that Sm(PV ) ⊂ Sm+1(PV ) for all m ≥ 0, so that S(PV ) = ∪∞
m=0Sm(PV ) is a filtered

∗-algebra. Notice that S(PV ) is generated as a ∗-algebra by the elements fij =
z̄izj

|z|2 ∈ S1.

Proposition. The ∗-subalgebra S(PV ) is dense in the C∗-algebra (C∞(PV ), || ||∞).

Proof. Given a point [v] ∈ PV , there exists an index i = 0 . . . n such that zi(v) 6= 0. In

particular fii([v]) = |zi(v)|2
|z(v)|2 6= 0. It follows that S1 separates points. Since S1 generates S

as a ∗-algebra, the conclusion follows from the Stone-Weierstraß theorem.

Toeplitz quantization of PV . The Toeplitz quantization map Tk : C∞(PV,C) →
End(Bk) takes the form:

Tk(f) =
Nk + 1

vol(PV )

∫

PV

ωnFS

n!
f(x)P (k)

x = (n + k)!

∫

PV

ωnFS

n!
f([v])

|v, k〉〈v, k|B
||v||2k .

This map is surjective since PV is compact. Using relations (4.15), we find:

Tk(fIJ) =
(n+ k)!

n!

∫

PV
ωnFS

âI |v, k + d〉〈v, k + d|B(â†)J

|z|2(k+m)
=

(n+ k)!

(n+ k +m)!
âIPk+m(â†)J .

In particular, we have:

Tk(fij) =
1

n+ k + 1
âiâ

†
j .
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Berezin quantization of PV . The Berezin symbol map σk : End(Bk) → C∞(PV,C)

takes the form:

σk(C)([v]) =
〈v, k|C|v, k〉
〈v, k|v, k〉 ∀C ∈ End(Bk) .

This map is injective and its inverse on the image Σk(PV ) := im σk defines the Berezin

quantization Qk : Σk(PV ) → End(Bk), which is a linear isomorphism. For the func-

tions (4.24), we find:

Qk(fIJ) =
(k −m)!

k!
Pk(â

†)I âJPk

and in particular:

Qk(fij) =
1

k
â†j âi .

Notice that Qk(fIJ) vanishes for m ≥ k. Since the operators f̂IJ = Pk(â
†)I âJPk with

m := |I| = |J | = k provide a basis for End(Bk), it follows that the image Σk(PV ) of the

Berezin symbol map coincides with Sk(PV ):

Σk(PV ) = Sk(PV ) ∀k ≥ 1 .

It follows that Σk(PV ) provides a weakly exhaustive filtration of (C∞(PV ), || ||∞):

∪∞
k=1Σk(PV ) = C∞(PV ) .

The Berezin transform βk : C∞(PV ) → Σk(PV ) takes the form:

βk(f)(v) = σk(Tk(f)) =
(n+ k)!

k!

∫

PV

ωnFS

n!
(u)

( |(u, v)|
||u||||v||

)2k

.

Notice that again Berezin and Toeplitz quantizations use Wick and anti-Wick orderings,

respectively. An extension of this quantization providing access to vector bundles over

quantized Pn has been presented in [30].

5. Berezin-Bergman quantization

In this section we discuss a generalized Berezin quantization procedure which clarifies the

proposal of [1]. This prescription, which we call Berezin-Bergman quantization, is relevant

for compact complex manifolds endowed with a Bergman metric.

Let (X,L) be a polarized compact complex manifold and assume that L is very ample

with dimCH
0(L) = n + 1. We let Ek := H0(Lk) and dimCEk = Mk + 1 (thus M1 = n).

The homogeneous coordinate ring R(X,L) = ⊕∞
k=0H

0(Lk) = ⊕∞
k=0Ek of X with respect to

L is generated in degree one and we have an isomorphism of graded algebras:

φ : R
∼→ B/I , (5.1)

where B = ⊕∞
k=0E

⊙k
1 is the symmetric algebra over the vector space E1 := H0(L) and I

is a graded ideal in B generated in degrees ≥ 2. The algebra B can be identified with

the algebra of polynomial functions on E∗
1 , and thus with the coordinate ring C[E∗

1 ] of
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the affine space SpecB over E∗
1 ≃ Cn+1. As a graded algebra, it is also the homogeneous

coordinate ring of the projective space P[E∗
1 ]. The Kodaira embedding i : X →֒ P(E∗

1)

defined by L presents X as a projective variety in P[E∗
1 ], whose vanishing ideal equals I,

and whose homogeneous coordinate ring equals R. Writing B = ⊕∞
k=0Bk and I = ⊕∞

k=0Ik,

the homogeneous components satisfy Ik ⊂ Bk as well as:

Ek ≃ Bk/Ik .

Let us now consider a scalar product ( , )1 on E1 and the associated Bergman metric

on X, whose Kähler form we denote by ω. We also let h be the induced Bergman Hermitian

scalar product on L. For every k ≥ 1, we have two natural ways to induce a scalar product

on H0(Lk). The first choice is to take the L2-product:

〈s, t〉k =

∫

X

ωn

n!
hk(s, t) ,

where hk = h⊗k. Performing generalized Berezin quantization with respect to this sequence

of products leads to the classical Berezin-Toeplitz theory discussed in the previous section.

The second choice is as follows. The product ( , )1 on E1 induces a scalar product

( , )B on the symmetric algebra B = ⊕∞
k=0E

⊙k
1 via the prescription:

(s1 ⊙ . . . sk, t1 ⊙ . . . tl)B =
1

k!
δk,l

∑

σ∈Sk

(s1, tσ(1))1 . . . (sk, tσ(k))1 , (5.2)

where Sk is the symmetric group on k letters and si, ti ∈ E1. Notice that the completion of

B = ⊕∞
k=0E

⊙k
1 with respect to the product (5.2) is the bosonic Fock space over the n+ 1-

dimensional Hilbert space (E1, ( , )1). Of course, this can also be viewed as the Bargmann

space over V = E∗
1 , which appeared in the quantization of the affine space A[V ]. Thus we

can view B as embedded in the Bargmann space B(V ), and (5.2) is the restriction of the

Bargmann product (4.10) to B.

Using the scalar product (5.2), we can identify Ek ≃ Bk/Ik with the orthogonal com-

plement I⊥k = {s ∈ Bk|(s, t)B = 0 ∀t ∈ Ik} of Ik in Bk. This identification gives a scalar

product ( , )k on Ek, which is induced by the restriction of ( , )B to I⊥k . To state this

precisely, notice that the Kodaira embedding i : X →֒ P[E∗
1 ] defined by L allows us to iden-

tify Bk with the space of holomorphic sections of Hk, where H is the hyperplane bundle

H = OP[E∗
1 ](1):

Bk = H0(Hk) .

Furthermore, the homogeneous component Ik of the vanishing ideal I can be identified with

the kernel of the pull-back map (restriction) on sections i∗k : H0(Hk) = Bk → H0(Lk) = Ek:

Ik := ker i∗k .

Since i∗k is surjective, it induces an isomorphism ψk : I⊥k → Ek, whose inverse φk := ψ−1
k :

Ek → I⊥k ≃ Bk/Ik we can take as the homogeneous k-component of (5.1). We define ( , )k
as follows:

(s, t)k := αk(φk(s), φk(t))B , (5.3)
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where the scaling constants:

αk :=
volω(X)

volωFS
(PV )

Nk + 1

Mk + 1

are chosen for later convenience. Here, volωFS
(PV ) = 1

n! .

Definition. The Berezin-Bergman quantization of (X,L) determined by the scalar prod-

uct ( , )1 on H0(L) is the generalized Berezin quantization performed with respect to the

sequence of scalar products ( , )k on H0(Lk) defined in (5.3).

Using the orthogonal decomposition Bk = Ik ⊕ I⊥k , let us pick a ( , )B-orthonormal

basis S0 . . . SNk
of Bk such that S0 . . . SMk

is a basis of I⊥k and such that SMk+1 . . . SNk

is a basis of Ik. Then i∗k(Sj) = 0 for j > Mk and the sections sj := 1√
αk
i∗k(Sj) (with

j = 0 . . .Mk) give an orthonormal basis of the space (Ek, ( , )k). The epsilon function of

PV at level k takes the form:

ǫPVk ([v]) =

Nk∑

j=0

hkFS([v])(Sj([v]), Sj([v])) =
Nk + 1

volωFS
(PV )

.

Restricting this identity to X shows that the epsilon function of the pair (hk, ( , )k) is

constant on X:

ǫk(x) =

Mk∑

j=0

hk(sj(x), sj(x)) =
Mk + 1

volω(X)
(x ∈ X) .

In particular, the induced scalar product ( , )k coincides with the L2-scalar product 〈 , 〉k
iff the epsilon function of the latter is constant, i.e. iff kω is balanced.

We now consider the generalized Berezin quantization of (X,ω,L, h) with respect to

the sequence of induced scalar products ( , )k on Ek = H0(Lk), k ≥ 1. We have surjec-

tive Berezin symbol maps σk : End(Ek) → C∞(X) whose images we denote by Σk, and

associated quantization maps Qk := (σk|Σk
)−1 : Σk → End(Ek).

Let Λk be the orthogonal projector of Bk onto I⊥k with respect to the product (5.2). It

is easy to see that the Rawnsley coherent states of Ek with respect to ( , )k are given by:

e(k)v :=
1

αk
i∗k(Λk|v, k〉) =

1

αk
i∗(|v, k〉) ∀v ∈ C(X) \ {0} ⊂ V ,

where C(X) = Spec(B/I) ⊂ V is the affine cone over X. The second form follows from

the fact that the component (1 − Λk)|z, k〉 along Ik vanishes for z ∈ C(X), so that:

Λk|v, k〉 = |v, k〉 for v ∈ C(X) .

The Rawnsley projectors take the form:

P
(k)
[v] = i∗k ◦

|v, k〉〈v, k|B
〈v, k|v, k〉B

◦ φk ([v] ∈ X ⊂ PV ) , (5.4)
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while the Berezin symbol of an operator C ∈ End(Ek) is given by:

σk(C)([v]) =
〈v, k|C̃ |v, k〉B
〈v, k|v, k〉B

, (5.5)

where C̃ := φk ◦C ◦ i∗k = φk ◦C ◦ φ−1
k ◦Λk ∈ End(Bk) is the transport of C to an operator

on Bk through the isomorphism φk : Ek → I⊥k ⊂ Bk.

Recall that the operators f̂IJ := Pk(â
†)I âJPk (where |I| = |J | = k) form a basis

of End(Bk). Thus space End(I⊥k ) is spanned by the operators Λkf̂IJΛk and End(Ek) is

spanned by:

f̂ ′IJ := i∗k ◦ f̂IJ ◦ φk (|I| = |J | = k) .

We have
˜̂
f ′IJ := Λkf̂IJΛk. Applying (5.5) to these operators, we find:

σk(f̂
′
IJ)([v]) =

〈v, k|f̂IJ |v, k〉B
〈v, k|v, k〉B

= fIJ([v]) ([v] ∈ X) .

It follows that:

Qk(fIJ |X) = f̂ ′IJ ,

where fIJ |X := fIJ ◦ i ∈ C∞(X). We conclude that Σk(X) is spanned by the restrictions

fIJ |X with |I| = |J | = k. Since Sk(PV ) ⊂ Sk+1(PV ), we have Σk(X) ⊂ Σk+1(X). The

union S(X) := ∪k≥0Σk(X) (where Σ0 := C consists of the constant functions on X) is a

filtered unital ∗-subalgebra of the C∗-algebra (C∞(X), || ||∞). Since the ∗-algebra S(PV ) is

generated by S1(PV ), it follows that S(X) is generated by Σ1(X) as a ∗-algebra. Moreover,

Σ1(X) separates the points of X since X can be viewed as a subset of PV and since S1(X)

separates the points of the latter. It follows that S(X) is dense in (C∞(X), || ||∞).

Remark. Let I be generated by p homogeneous polynomials F1 . . . Fp of degrees at least

two. Since âi act on the Bargmann space as multiplication by zi, we have the linear

decomposition I =
∑p

l=1 imFl(â), where im denotes the image of a linear operator and all

operators are taken to act in the space B. It follows that:

I⊥ = ∩pl=1kerF̄l(â
†) ,

where f̄ is the polynomial in z0 . . . zn obtained by conjugating all coefficients of f . Since

â†i act as ∂i, the operators in the right hand side are holomorphic differential operators:

F̄l(â
†) = F̄l(∂0 . . . ∂n)

and we find that I⊥ is the graded vector space of those solutions s of the system of the

following linear holomorphic partial differential equations with constant coefficients:

F̄l(∂0 . . . ∂n)s(v0 . . . vn) = 0 , (5.6)

which are homogeneous polynomials in v0 . . . vn. The graded components I⊥k ⊂ Bk can

be obtained by restricting to homogeneous polynomials of degree k, which amounts to

imposing the condition:

Gs = ks , (5.7)
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where G =
∑n

i=0 v
i∂i is the Euler operator. These equations determine the unique exten-

sion of a section s ∈ H0(X,Lk) to a section of H0(PV,Hk) lying in I⊥k . The point is that

the system (5.6), (5.7) has a unique polynomial solution which has prescribed behavior on

the affine cone C(X) ⊂ V .

Relation with fuzzy geometry. A procedure for defining fuzzy versions of compact

Hodge manifolds X was proposed in [1]. It is clear from the above that:

The proposal of [1] amounts to defining the fuzzy version of X as the generalized

Berezin quantization of X with respect to the sequence of induced scalar products ( , )k
on the spaces Ek := H0(Lk). This quantization prescription agrees with classical Berezin

quantization at a fixed level k iff kω is balanced. It is also easy to prove the following:

Proposition. The Berezin-Bergman quantization of PV coincides with its classical

Berezin quantization.

Proof. The vanishing ideal I is zero in this case, so the Berezin-Bergman scalar product

( , )k of section 5 coincides with the restriction of the Bargmann product 〈 , 〉B (4.10)

to Ek (recall (5.2) the intermediate scalar product ( , )B induced by ( , )1). Since 〈 , 〉B
coincide with the L2-product 〈 , 〉k up to a constant scale factor, the results of section 3

show that the generalized Berezin quantization based on ( , )k is equivalent to that based

on 〈 , 〉k. The first quantization is the Berezin-Bergman quantization, while the second is

the classical Berezin quantization of PV .

6. Harmonic analysis on quantized Hodge manifolds

In this section, we discuss the construction of a “fuzzy” Laplace operator on Berezin quan-

tized compact Hodge manifolds. There are two obvious choices: the Berezin push and the

Berezin-Toeplitz lift of the ordinary Laplace operator. We use the former to calculate the

approximate spectrum of the Laplace operator for two examples and employ the latter

to define fuzzy scalar field theories on arbitrary compact Hodge manifolds. Let us fix a

compact prequantized Hodge manifold (X,ω,L, h).

6.1 ‘Quantizing’ the classical laplacian

Let us take µ to be the Liouville measure defined by the Kähler form ω and fix some

generalized Berezin quantization of (X,ω). Recall (3.26) that the space C∞(X) carries the

L2-scalar product induced by the Kähler metric:

≺ f, g ≻=

∫

X

ωn

n!
f̄g (6.1)

as well as the scalar products (3.27):

≺ f, g ≻ǫk=

∫

X

ωn

n!
ǫkf̄g ,
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On the other hand, the Berezin algebras (Σk, ⋄k) (where Σk = σ(End(Ek)) with Ek =

H0(Lk)) carry the Berezin scalar products (3.29) induced by the trace (3.28):

≺ f, g ≻B=

∫∫

k
f̄ ⋄k g =

∫

X

ωn

n!
ǫkf ⋄k g = 〈Qk(f), Qk(g)〉HS . (6.2)

The Laplace operator ∆ of (X,ω) is Hermitian and positive with respect to the ordinary

L2-scalar product (6.1) on functions, which is the realization of (3.26) in the case at hand.

The Berezin push. Considering the symbol spaces Σk, we define truncated Laplacians

∆k : Σk → Σk via:

∆k = πk ◦ ∆|Σk
,

where πk is the ≺ , ≻-orthoprojector on Σk inside C∞(X). Explicitly, let the Kähler form

be given by ω = ωi̄dz
i ∧ dz̄̄ in some local coordinates zi defined on a Zariski open set and

let Σk be spanned by the functions ei ∈ C∞(X) with i = 0, . . . , Nk. The Laplace operator

of (X,ω) takes the form:

∆f = ωi̄∂i∂̄f ,

and the orthoprojector πk : C∞(X) → Σk is given by the map:

πk(f) =

Nk∑

i=0

ei

∫

X

ωn

n!
ēif (f ∈ C∞(X)) . (6.3)

Notice that ∆k is ≺ , ≻-self-adjoint and positive on Σk. The truncated Laplacian

need not be Hermitian with respect to the Berezin scalar product, so the Berezin push

∆B
k = Qk ◦∆k ◦σk may generally fail to be Hermitian with respect to the Hilbert-Schmidt

scalar product on End(Ek). It follows that the Berezin push ∆B
k does not provide a good

general notion of “fuzzy Laplacian”. In fuzzy field theory, the fuzzy Laplacian is used when

building the kinetic term for scalar fields in the “fuzzified” field action, which is defined on

End(Ek). Since the natural scalar product on that space is the Hilbert-Schmidt product,

the kinetic term should be specified by an operator which is 〈 , 〉HS -Hermitian and positive.

The Berezin-Toeplitz lift. The discussion of section 3.8 shows that the Berezin-

Toeplitz lift (3.34) of the Laplacian:

∆̂k := Tk ◦M 1
ǫk

◦ ∆ ◦ σk : End(Ek) → End(Ek)

is a positive Hermitian operator on (End(Ek), 〈 , 〉HS). Moreover, the Berezin-Toeplitz

transform (3.37):

∆⋄k
= βmod,k ◦ ∆|Σk

= βk ◦M 1
ǫk

◦ ∆|Σk
: Σk → Σk

is Hermitian and positive-definite with respect to the Berezin product (6.2). We will view

∆̂k (equivalently, ∆⋄k
) as the definition of the “fuzzy Laplacian” at level k. Explicitly, we

have:

∆̂k(C) =

∫

X

ωn

n!
(x)P (k)

x (∆σk(C))(x) (C ∈ End(Ek))
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and:

∆⋄k
(f)(x) =

∫

X

ωn

n!
(y)Ψk(x, y)(∆f)(y) (f ∈ Σk) ,

where we used the integral expression (3.36) for the modified Berezin transform:

βmod,k(f)(x) :=

∫

X

ωn

n!
(y)Ψk(x, y)f(y) .

We are using Ψk which is the squared two-point function (3.10) at level k:

Ψk(x, y) := σk(P
(k)
x )(y) = σk(P

(k)
y )(x) = tr

(
P (k)
x P (k)

y

)
.

6.2 The case of Kähler homogeneous spaces

Recall that a Kähler manifold (X,ω) is called a Kähler homogeneous space when its group

of holomorphic isometries Aut(X,ω) acts transitively on X. In this case, the equivariance

properties of Berezin and Berezin-Toeplitz quantization allow one to use representation-

theoretic arguments in order to extract further information. Let us consider the case of

simply connected coadjoint orbits X = G/H, where we can take G to be a compact simple

Lie group. This includes the case of projective spaces Pn, which corresponds to the choice

G = SU(n + 1). In this situation G = AutL,h(X,ω) = Aut(X,ω). This class of spaces has

been studied in great detail, so we will only make a few basic remarks for use in the next

subsection.

Consider the classical Berezin and Berezin-Toeplitz quantizations of such a space. The

general discussion of section 3 shows that all objects associated with these quantization

schemes are G-equivariant. In particular, G-invariance of the (absolute) epsilon function

implies that it is constant and given by:

ǫk =
Nk + 1

volω(X)
,

where Nk+1 = dimEk. The unitary representation ρk of G in Ek gives the decomposition:

Ek = ⊕θ∈Rep(G)Rθ ⊗C Ek(θ) ,

where Rep(G) is the discrete set of unitary finite-dimensional irreps of the compact Lie

group G, Rθ are the corresponding G-modules and Ek(θ) are (possibly zero) Hermitian

vector spaces. Their dimensions mk(θ) := dimEk(θ) ≥ 0 are the corresponding multiplici-

ties. Of course, only a finite number of irreps appear with non-zero multiplicity in the sum

above, i.e. we have Ek(θ) = 0 except for a finite number of values of θ. The Hermitian

vector space (End(Ek), 〈 , 〉HS) = E∗
k ⊗Ek carries the unitary representation ρ̂k = ρ∗k ⊗ ρk,

whose orthogonal decomposition into irreducibles we write as:

End(Ek) = ⊕θ∈Rep(G)Rθ ⊗C Wk(θ) . (6.4)

The equivariance property (3.14) of the bijection Qk : Σk → End(Ek) shows that the

Berezin quantization map is an isomorphism between the unitary G-modules (Σk, ≺ , ≻B
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, τ |Σk
) and (End(Ek), 〈 , 〉HS, ρ̂k). Accordingly, Σk consists of representation functions for

G and has the ≺ , ≻B-orthogonal decomposition:

Σk = ⊕θ∈Rep(G)Rθ ⊗C Σk(θ) , (6.5)

while Qk has the form:

Qk = ⊕θ∈Rep(G)idRθ
⊗Qk(θ) (6.6)

for some isometries Qk(θ) : Σk(θ) →Wk(θ). The Berezin symbol map is also τ -equivariant

and thus takes the form:

σk = ⊕θ∈Rep(G)idRθ
⊗ σk(θ) , (6.7)

where σk(θ) = Qk(θ)
−1 : Wk(θ) → Σk(θ). A similar argument shows that the (restricted)

Toeplitz quantization map takes the form:

Tk|Σk
= ⊕θ∈Rep(G)idRθ

⊗ Tk(θ) (6.8)

for some bijections Tk(θ) : Σk(θ) → Wk(θ). Unlike Qk, the operators Tk(θ) need not be

not unitary since Tk need not be unitary with respect to the scalar products ≺ , ≻B and

〈 , 〉HS. Combining the above, we find that the (restricted) Berezin transform decomposes

as:

β|Σk
= ⊕θ∈Rep(G)idRθ

⊗ βk(θ) , (6.9)

where βk(θ) are linear automorphisms of the subspaces Σk(θ).

Since X = G/H is a Kähler homogeneous space, its Laplace operator ∆ : C∞(X) →
C∞(X) is G-invariant:

∆ ◦ τ = τ ◦ ∆ (τ ∈ Aut(X,ω)) .

It follows that15 ∆(Σk) ⊂ Σk (thus ∆k = ∆|Σk
) and that we have a decomposition:

∆k = ⊕θ∈Rep(G)idRθ
⊗ ∆k(θ) (6.10)

for some linear operators ∆k(θ) acting in the spaces Σk(θ). It is now clear that the Berezin

push (3.7) and the Berezin-Toeplitz lift (3.34) of ∆ take the forms:

∆B
k = ⊕θ∈Rep(G)idRθ

⊗ ∆B
k (θ)

and:
Nk + 1

volω(X)
∆̂k = ⊕θ∈Rep(G)idRθ

⊗ ∆̂k(θ) ,

where ∆B
k (θ) = Qk(θ) ◦∆k(θ) ◦ σk(θ) and ∆̂k(θ) = Tk(θ) ◦∆k(θ) ◦ σk(θ). Furthermore, we

have the decomposition:

Nk + 1

volω(X)
∆⋄k

= ⊕θ∈Rep(G)idRθ
⊗ ∆⋄k

(θ) ,

where ∆̂⋄k
(θ) = βk(θ) ◦ ∆k(θ). The relation Tk = Qk ◦ βk gives Tk(θ) = Qk(θ) ◦ βk(θ).

Of course, the coherent states in this case can be determined explicitly through Perelo-

mov’s method, and the operators Qk(θ), Tk(θ), βk(θ) etc. can be expressed in terms of the

representation theory of G.

15This recovers the observation of [31] that ∆ preserves Σk on all flag manifolds when using the classical

Berezin quantization with respect to their homogeneous Kähler metric.

– 46 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
9

Remark. A particularly simple case arises when all non-zero multiplicities mk(θ) in the

decomposition (6.4) equal one. Then all non-vanishing spaces Wk(θ) are one-dimensional

and can be identified with the space C of complex numbers upon fixing a normalized

vector in each of them. The non-vanishing components Qk(θ), Tk(θ), σk(θ), βk(θ) are simply

complex numbers, and we find:

∆⋄k
=

volω(X)

Nk + 1
⊕θ∈Rep(G):mk(θ)6=0 βk(θ)∆k(θ)idRθ

and:

∆̂k =
volω(X)

Nk + 1
⊕θ∈Rep(G):mk(θ)6=0 βk(θ)∆

B
k (θ)idRθ

since in this case we have ∆̂k(θ) = βk(θ)∆
B
k (θ). If one furthermore has βk(θ) ∈ R+ for all

k and θ, then it follows that both ∆k and ∆⋄k
are 〈 , 〉B-Hermitian and positive and both

∆̂k and ∆B
k are 〈 , 〉HS-Hermitian and positive. In such a situation, one can use the Berezin

push of ∆ as a fuzzy Laplacian since it is self-adjoint with respect to the Hilbert-Schmidt

scalar product. As we shall see in the next subsection, this very particular case arises e.g.

for X = Pn, when the Berezin push ∆B
k coincides with the second Casimir operator of

G = U(n+ 1) in the representation End(Ek).

6.3 The quantum laplacian on Pn

As shown in section 4, classical Berezin quantization of (Pn, ωFS) with quantum line bundle

H agrees with its Berezin-Bergman quantization and with the construction of fuzzy pro-

jective spaces used in the fuzzy geometry literature [17, 29]. Since (Pn, ωFS) is the Kähler

homogeneous space U(n+ 1)/(U(n) × U(1)), and since the hyperplane bundle is equivari-

ant, the spaces Ek = H0(Hk) carry a unitary representation ρk of U(n + 1). Thinking

of Ek as the space Rk of homogeneous polynomials of degree k in n + 1 variables, it is

clear that ρk is the totally symmetric irreducible representation, which has Dynkin labels

(k, 0, . . . , 0). The space End(Ek) thus forms the (reducible) tensor product representation

(k, 0, . . . , 0) ⊗ (0, . . . , 0, k), which decomposes into irreducibles as:

End(Ek) ∼=
k⊕

ℓ=0

(ℓ, 0, . . . , 0, ℓ) .

Notice that all subspaces in this decomposition appear with multiplicity one.

The usual fuzzy Laplacian is given by the second Casimir Ĉ
(k)
2 of U(n + 1) in the

representation ρ̂k = ρ∗k ⊗C ρk on End(Ek) = E∗
k ⊗C Ek. The explicit form of this operator

in terms of annihilation and creation operators follows from the Schwinger construction

(cf. [30]):

Ĉ
(k)
2 (C) =

∑

a

[L̂a, [L̂a, C]] , L̂a =
∑

i,j

â†i
τaij
2
âj . (6.11)

Here τaij are the Gell-Mann matrices of su(n + 1) with normalization fixed by the Fierz

identity: ∑

a

τaijτ
a
kl = 2

(
δilδjk − 1

n+1δijδkl

)
.

Let us first show that Ĉ
(k)
2 agrees with ∆B

k .
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Lemma. Let P
(k)
x be the coherent projectors of Pn at level k and consider the vector

valued function P (k) : X → End(Ek), P
(k)(x) := P

(k)
x . Then Ĉ

(k)
2 ◦ P (k) = ∆(P (k)), i.e.

Ĉ
(k)
2 (P (k)

x ) = ∆P (k)
x (x ∈ X) .

Proof. Direct computation gives:

Ĉ
(k)
2 (C) = N̂(N̂ + n)C −

∑

ij

â†j âiCâ
†
i âj ,

where N̂ :=
∑

i â
†
i âi is the number operator. For simplicity, let us now restrict to the

case of P1 (the proof for n > 1 follows along the same lines). With the homogeneous

coordinates denoted by z0, z1, the Laplace operator on the patch16 z1 6= 0 with local

coordinate z := z0/z1 reads as:

∆f := (1 + zz̄)2
∂

∂z

∂

∂z̄
f .

Introducing the quantities:

F krs =
zrz̄s

(1 + zz̄)k
and Mk

rs =
1

k!
(â†0)

r(â†1)
k−r|0〉〈0|(a†0)s(a

†
1)
k−s , (6.12)

we have:

P (k)
x =

k∑

r,s=0

(
k

r

)(
k

s

)
F krsM

k
rs .

One easily checks the identities:

∆F krs = k(k + 1)F krs − rsF kr−1,s−1 − (k − r)(k − s)F krs − rsF krs − (k − r)(k − s)F kr+1,s+1

and:

Ĉ
(k)
2 (Mk

rs) = k(k+1)Mk
rs−rsMk

r−1,s−1−(k−r)(k−s)Mk
rs−rsMk

rs−(k−r)(k−s)Mk
r+1,s+1 .

It is also easy to check that:

k∑

r,s=0

(
k

r

)(
k

s

)
F krsrsM

k
r−1,s−1 =

k−1∑

r,s=0

(
k

r + 1

)(
k

s+ 1

)
F kr+1,s+1(r + 1)(s + 1)Mk

rs

=

k∑

r,s=0

(
k

r

)(
k

s

)
F kr+1,s+1(k − r)(k − s)Mk

rs .

The same identity holds when F krs and Mk
rs are interchanged. Putting everything together,

one finds Ĉ
(k)
2

(
P

(k)
x

)
= ∆P

(k)
x .

16Proving the identity on a single patch is evidently sufficient, as we are missing only one point on P
1

and all the functions involved are in C∞(P1).
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Proposition. For every k ≥ 1, the Berezin push ∆B
k of the truncated Laplacian ∆k of

Pn coincides with the second Casimir of U(n+ 1) in the representation End(Ek)

∆B
k = Ĉ

(k)
2 .

Proof. Using the Lemma, we compute:

σ
(
∆B
k (C)

)
(x) = ∆k tr

(
P (k)
x C

)
= tr

(
Ĉ

(k)
2 (P (k)

x )C
)

= tr
(
P (k)
x Ĉ

(k)
2 (C)

)
= σ

(
Ĉ

(k)
2 (C)

)
(x) .

The next to last equality holds due to the form Ĉ
(k)
2 (C) =

∑
a[L̂a, [L̂a, C]] of the Casimir

in the representation End(Ek). The conclusion of the proposition now follows by using

injectivity of σ.

We next consider the Berezin-Toeplitz lift of ∆. Since Pn is a Kähler homogeneous

space, the difference between the Berezin-Toeplitz lift and the Berezin push of ∆k is an

ℓ-dependent rescaling on the eigenfunctions17 YℓM . Let us show this more explicitly. To

be concise, we will rely on results presented e.g. in [17, 30], to which we refer the reader

for further details.

First, note that End(Ek) is spanned by operators ŶℓM , ℓ = 0, . . . , k, called polarization

tensors. These are the operator analogues of hyperspherical harmonics and satisfy:

Ĉ
(k)
2 (ŶℓM ) = ℓ(ℓ+ n) . (6.13)

The multi-index M captures the same indices as for YℓM . The polarization tensors are

orthogonal with respect to the Hilbert-Schmidt scalar product, and we choose the normal-

ization (cf. [30]):
1

dim(End(Ek))
tr(ŶℓM Ŷℓ′M ′) = δℓℓ′δMM ′ .

Direct computation gives the relation [30]:

P (k)
x =

∑

k,ℓ,M

T
1/2
k,n (ℓ)YℓM (x)ŶℓM , Tk,n(ℓ) :=

k!(k + n)!

n!(k − ℓ)!(k + ℓ+ n)!
, (6.14)

from which we conclude that the Berezin symbols of the polarization tensors are:

σ(ŶℓM ) = tr(P (k)
x ŶℓM) = dim(End(Ek))T

1/2
k,n (ℓ)YℓM .

Using this, one readily computes:

1

dim(End(Ek))
tr(Ŷℓ′M ′T (YℓM)) = volωFS

(Pn)T
1/2
k,n (ℓ)δℓℓ′δMM ′ ,

17For brevity, we will always denote the hyperspherical harmonics on P
n by YℓM , where ℓ is the angular

momentum ∆YℓM = ℓ(ℓ + n)YℓM and M is a multi-index capturing all further labels. We work with the

normalization 1
volωFS

(P n)

R ωn

FS

n!
YℓMYℓ′M′ = δℓℓ′δMM′ . A detailed discussion can be found e.g. in [30].
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from which it follows that the Toeplitz quantization of YℓM is given by:

T (YℓM) = volωFS
(Pn)T

1/2
k,n (ℓ)ŶℓM .

Hence the numbers βk(θℓ) (cf. section 6.2), where θℓ refers to the irrep of SU(n + 1) with

Dynkin labels (ℓ, 0, . . . , 0, ℓ), are given by:

βk(θℓ) =
σ(T (YℓM ))

YℓM
= dim(End(Ek))volωFS

(Pn)Tk,n(ℓ) .

Note that βk(θℓ) are real and positive. As explained in the previous subsection, this means

that both the Berezin pull and the Berezin-Toeplitz lift are reasonable candidates for the

quantized Laplacian in this case. It is now trivial to compute:

tr(ŶℓM Ĉ
(k)
2 Ŷℓ′M ′) = dim(End(Ek))ℓ(ℓ+ n)δℓℓ′δMM ′

and:

tr(ŶℓM∆̂kŶℓ′M ′) = dim(End(Ek))
2volωFS

(Pn)Tk,n(ℓ)ℓ(ℓ+ n)δℓℓ′δMM ′ .

It follows that on Pn, ∆̂k and ∆B
k = Ĉ

(k)
2 are related to each other via the positive ℓ-

dependent rescaling factors:

T̃k,n(ℓ) := dim(End(Ek))volωFS
(Pn)Tk,n(ℓ) . (6.15)

6.4 Approximating the spectrum of the laplacian on Fermat curves

In spite of its shortcomings, the truncated Laplacian (equivalently, its Berezin push) can be

used to approximate the spectrum of the classical Laplacian. When the generalized Berezin

quantization is chosen such that ∪∞
k=0Σk = C∞(X), the operators ∆k can be viewed as

approximations to the full Laplacian and the spectrum of the latter can be approximated

by computing the spectra of ∆k. This happens, for example, when Σk are the symbol

spaces of the Berezin-Bergman quantization, since in that case the union of Σk is dense in

C∞(X) (see section 5).

To be more explicit, we will consider the Berezin-Bergmann quantization of Fermat

curves, i.e. the projective algebraic curves Xp ⊂ P2 given by the equation:

f(z0, z1, z2) := zp0 + zp1 + zp2 = 0 , (6.16)

where (z0, z1, z2) are homogeneous coordinates on P2. These curves are non-singular and

of genus (p− 1)(p− 2)/2. In the following, we will restrict our attention to the cases p = 2

(the conic) and p = 3 (the Fermat elliptic curve).

We endow Xp with the Bergman metric given by the pull-back of the Fubini-Study

metric via the inclusion map i : Xp →֒P2. It will be convenient to cover18 P2 by the patches

Uijk:

Uijk := {z ∈ P
2 | |zi| ≥ |zj | ≥ |zk|} , (6.17)

18This covering together with the integration method we use has been considered, e.g., in [32].
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where we choose the normalization |zi| = 1 and denote the resulting coordinates by z
(ijk)
m .

One easily checks that the patches intersect only on their boundaries.

Note that x = z
(ijk)
k is a good local coordinate on the patch Uijk. The pull-back of the

Fubini-Study metric is easily calculated by noting that:

∂z
(ijk)
j

∂x
= −

(
∂f

∂x

)(
∂f

∂z
(ijk)
j

)−1

,

which is a consequence of f = 0. The patches are chosen such that the pull-back i∗ω(x) =:

w(x)dx ∧ dx̄ is always well defined. The Laplacian is given by:

∆ :=
1

w(x)

∂

∂x

∂

∂x̄
.

We approximate the integrals in (6.3) by summing over the integrand evaluated at a

random sample of N points on each patch and summing over patches. To generate the

sample points, we proceed as follows, cf. [32]. On the patch Uijk we pick a point z
(ijk)
k in

the unit disk: |z(ijk)
k | < 1. The coordinate z

(ijk)
j is evaluated as:

z
(ijk)
j = φrnd

[
−1 − (z

(ijk)
k )3

] 1
p
,

where φrnd is a uniformly chosen random p-th root of unity. If 1 ≥ |z(ijk)
j | ≥ |z(ijk)

k |, we

include the point (1, z
(ijk)
j , z

(ijk)
k ) in the set of sample points; otherwise we pick a new one.

We then use the formula:

∫

Uijk

ωf(x) ≈ 1

6N

N∑

n=1

f(xn)w(xn) ,

The total integral is obtained by summing over all 6 patches.

Our set Σk is the set of symbols of Berezin-Bergman quantization at level k. Thus we

consider the polynomial ring B = ⊕∞
k=0Bk on P2 and the vanishing ideal I = (f) = ⊕∞

k=0Ik
with Ik ⊂ Bk. The space of endomorphisms of Ek = Bk/Ik is identified with Σk. A basis

(ei) for Σk is constructed from a set of monomials (χα) of degree k forming a basis of Ek
by considering all pairs νk χαχ̄β, where νk is the normalization factor:

νk :=
1

||z||2k =
1

(
1 + z

(ijk)
j z̄

(ijk)
j + z

(ijk)
k z̄

(ijk)
k

)k . (6.18)

The projector πk : C∞(Xp) → Σk is defined by the integral expression (6.3).

Given an arbitrary, not necessarily orthonormal, basis (ei) of Σk, we expand the eigen-

value equation ∆fm = λmfm in the following manner:

∑

i

〈ej |∆|ei〉〈ei|f ′m〉 = λm
∑

i

〈ej |ei〉〈ei|f ′m〉 , (6.19)

– 51 –



J
H
E
P
0
9
(
2
0
0
8
)
0
5
9

Figure 1: Spectra of the Laplace operator on the Fermat curves X2, X3 and P2 (from top to

bottom) for k = 0, 1, 2, 3, 4. The spreading of the eigenvalues is related to numerical errors.

where 〈 , 〉 denotes again the scalar product with respect to the L2-norm and f ′m is the

(unique) function such that fi =
∑

i ei〈ei|f ′m〉. After defining the vector ~f ′m = (〈ei|f ′m〉i),
the eigenvalue problem (6.19) turns into the form:

A~f ′m = λmB~f
′
m ,

where A and B are matrices, B being invertible. The eigenvalues λm of the Laplace

operator are therefore the eigenvalues of the matrix B−1A. Note that this procedure is in

fact equivalent to the one used in [33].

The numerical results19 for k ≤ 2 are presented in tables 1 and 2. For comparison, we

ran our algorithm also for the space P2 itself, choosing the same patches (in that case, Ek
is the space of linear endomorphisms of Bk); the results of this are shown in table 3. In

all cases, the integration was performed using 10, 000 points per patch. The spectra of the

Laplace operators for k ≤ 4 are displayed in figure 1.

6.5 Fuzzy real scalar field theory on compact Hodge manifolds

Ordinary real scalar field theory on (X,ω) is defined by the Euclidean action functional:

S[φ] =
1

volω(X)

∫

X

ωn

n!
(φ∆φ+ V (φ)) (φ ∈ C∞(X,R)) , (6.20)

where ∆ is the Laplace operator of (X,ω), and V (φ) =
∑d

s=0 asφ
s is a polynomial in φ of

degree d with real coefficients ak ∈ R. Notice that we include a possible mass term for φ as

a quadratic contribution to V . Since X is a compact space, potentials V of odd degree are

in principle allowed, though the consistency of the corresponding quantum theory depends

on a detailed analysis of quantum effects.

19Our computations are merely a demonstration of principle, as the algorithm is run on a laptop using

Mathematica. Switching to C and using more powerful computers, one can easily increase the precision.
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k Eigenvalues of ∆

0 0

3.00086 3.00081

1 1.00611 1.00588 1.00404 1.00404 0.992317 0.992314

0

11.0669 9.51623 9.13809

6.46006 5.8219 5.8219 5.5911 5.50849 5.50849 5.24445

2 4.17542 4.06504 3.9937 3.90068 3.90068

3.58166 3.3962 2.91584

1.95561 1.83634 1.79089 1.19609 1.10872 1.0353

0.0465755

Table 1: Results for the eigenvalues of the Laplace operator on X2.

k Eigenvalues of ∆

0 0

3.00086 3.00081

1 1.00611 1.00588 1.00404 1.00404 0.992317 0.992314

0

13.3283 12.3062

8.70644 8.1688 8.16022 8.14907 8.13025 8.12288 8.06782

7.08575 7.05761 7.04119 7.04118 6.67228 6.63273

2 4.97054 4.9572 4.85558 4.84641 4.84596 4.84476 4.16108

4.10807 3.92685 3.90904 3.87988 3.85214 3.53332 3.52194

1.47074 1.46942 1.46242 1.4616 1.45804 1.45203

0.00002

Table 2: Results for the eigenvalues of the Laplace operator on X3.

k Eigenvalues of ∆

0 0

1 3.37386 3.35758 3.34758 3.23647 3.23203 3.03376 3.00594 2.99832

0

9.26534 9.26534 9.231 9.16842 9.08967 9.08967 9.08707 9.03964

8.95108 8.77926 8.60043 8.59167 8.43174 8.40971 8.37658 8.3692

2 8.30439 8.28543 8.25084 8.25084 8.1738 7.97861 7.95145 7.95145

7.94024 7.94024 7.48435

3.30249 3.26888 3.25238 3.23301 3.22454 3.06392 3.02943 3.01363

0

Table 3: Eigenvalues of the Laplace operator on P2 as computed by our algorithm. The exact

eigenvalues joining the spectrum at level k are given by k(k + 2) with a degeneracy of (1 + k)3.
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The discussion in the previous subsections allows us to define a “fuzzy” version of the

action (6.20) as follows:

Sk(Φ) := tr
[
Φ∆̂k(Φ) + V (Φ)

]
, (6.21)

where Φ ∈ End(Ek). The reality condition φ̄ = φ is replaced by the 〈 , 〉HS-hermiticity

requirement Φ† = Φ. Using the relation σk(∆̂kΦ) = ∆⋄k
σk(Φ) (see (3.37)), we find:

Sk(Φ) = S⋄
k(σk(Φ)) , (6.22)

where:

S⋄
k[φ] :=

1

volω(X)

∫∫

k
[φ ⋄k ∆⋄k

φ+ V⋄k
(φ)] =

1

volω(X)

∫

X

ωn

n!
ǫk [φ ⋄k ∆⋄k

φ+ V⋄k
(φ)]

for φ ∈ Σk such that φ̄ = φ. Here V⋄k
(φ) :=

∑2d
s=0 asφ

⋄ks, where φ⋄ks := φ ⋄k . . . ⋄k φ (s

times) and we used relation (3.28).

Working with the finite dimensional space Σk
∼= End(Ek) reduces the functional inte-

gral
∫
D[φ] in the definition of the partition function:

Z =

∫
D[φ] e−S[φ] (6.23)

to a well-defined finite dimensional integral Zk. (On Pn, for example, the functional measure

D[Φ] becomes the Dyson measure on the space of Hermitian operators on Ek). Hence Zk
provide regularizations of the quantum field theory defined by (6.20). These regularized

field theories are known in the literature as fuzzy scalar field theories.20

Remark. Let ρk be the Toeplitz quantization of the function 1
volω(X)ǫk

at level k:

ρk := Tk

(
1

volω(X)ǫk

)
=

1

volω(X)

∫

X

ωn

n!
P (k)
x ∈ End(Ek) . (6.24)

Clearly ρk is Hermitian and strictly positive on (Ek, 〈 , 〉k). Furthermore tr(ρk) = 1, so ρk
is a density operator on Ek. For any operator C ∈ End(Ek), we have:

tr (ρkC) =
1

volω(X)

∫

X

ωn

n!
σk(C) .

Hence the operator ρk allows us to remove the epsilon function from the integral.

7. Directions for further research

Generalized Berezin quantization raises a series of natural questions about the asymptotic

behavior of the quantization maps Qk for large k as a function of the defining sequence of

scalar products ( , )k. In particular, one would like to know what conditions should be

imposed on the large k behavior of these scalar products in order to ensure that the gener-

alized quantization prescription induces a formal star product on C∞(X) and thus defines a

20See [29] for more details on this point.
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formal deformation quantization. Other natural questions involve the relation with Chow-

Mumford stability and K-stability and with approximation theorems for Kähler metrics of

constant scalar curvature. An important set of applications concerns the quantization of

toric varieties, and the extension to the singular case.

The definition of the fuzzy Laplace operator as the Berezin-Toeplitz lift of the clas-

sical Laplacian remains somewhat ad hoc. A better understanding of the quantization of

the classical Laplacian ∆ seems to require the quantization of differential forms and the

construction of a quantum analogue of a volume form.

It would also be interesting to examine the relevance of our general quantized spaces

within string theory. In particular, one could study the extension of the Myers effect [34]

to more general Hodge manifolds.
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8. Glossary of notation

Notation is in page order of definition (rather than first appearance) excluding the intro-

duction. Note that 〈 , 〉k indicates an induced Hermitian scalar product on Ek depending

on the situation (usually the L2-scalar products 〈 , 〉hk) while ( , )k is an arbitrary sequence

of Hermitian scalar products on Ek used in the generalized quantization procedures.

Notation Explanation Page (Eqn)

X compact complex manifold, usually Kähler and/or Hodge 5

(X,L) polarized complex manifold 7

R(X, L) homogeneous coordinate ring of (X, L) embedded in PV 10

ω Kähler form, usually L-polarized 5

ωFS Kähler form of Fubini-Study metric 11, 41

(X,L, ω) polarized Hodge manifold 5

Lk Lk := L⊗k 5

Γ(Lk) space of smooth sections of Lk (contains Ek) 6

(L, h) Hermitian holomorphic line bundle on (X,ω), “prequantum bundle” 6

(X,ω, L, h) prequantized Hodge manifold 6

Aut(X,ω,L, h) automorphism group of a prequantized Hodge manifold 6

AutL,h(X, ω,L, h) Aut(X,ω,L, h)/U(1), subgroup of isometries admitting a lift 7

∇ Chern connection associated to (L, h) 5

∇k Chern connection associated to (Lk , hk) 6

F curvature of ∇ 5

Fk curvature of ∇k 6

hk hk := h⊗k, Hermitian scalar product on Lk 6

hB Bergman metric 8 (2.7)

hFS Hermitian metric on H, hk
FS := h⊗k

FS 41 (4.16)
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h induced Bergman Hermitian scalar product on L 46

µ positive (Radon) measure on X 6

µǫ µǫ := µǫ 22

µh µh := µωh
, Liouville measure defined by ωh 23

L2(X, h, µ) L2-completion of Γ(Lk) with respect to 〈 , 〉µ,h
k

6

ρk group action of Aut(X,ω, L, h) on End(H0(Lk)) 6 (2.3)

Ek space of holomorphic sections of L⊗k 12

τ action of AutL,h(X,ω) on C∞(X) 17 (3.13)

EX Hilbert direct sum of Ek, EX := ⊕∞
k=0(Ek, 〈 , 〉k) 31 (4.1)

B symmetric algebra associated to E, B := ⊕∞
k=0E

⊙k 35 (4.8)

B(V ) weighted Bargmann space B(V ) := L2
hol(V, dν) of ν-square integrable

entire functions on V

37

L(B) algebra of bounded operators on B 39

τ tautological bundle, τ = OP(V )(−1) 40

H hyperplane bundle H = OP(V )(1) dual to τ 41

I graded ideal in B defined by φ : R
∼→ B/I 45 (5.1)

Ĉ
(k)
2 fuzzy Laplacian, second Casimir of U(n+ 1) in ρ̂k representation 55 (6.11)

τa
ij Gell-Mann matrices of su(n+ 1) 55

YℓM hyperspherical harmonics on Pn 57

ŶℓM polarization tensors 57 (6.13)

Tk,n(ℓ) Tk,n(ℓ) :=
k!(k+n)!

n!(k−ℓ)!(k+ℓ+n)!
57 (6.14)

σ lower Berezin symbol map 14 (3.2)

σk Berezin symbol maps 12

Q generalized Berezin quantization map 14 (3.3)

Qk Berezin quantization maps 12

T generalized Toeplitz quantization map T : C∞(X) → End(E) 24 (3.31)

Tk Toeplitz quantization map T at level k 30

β Berezin transform with respect to ( , ) 25

βk Berezin transform β at level k 30

βmod modified Berezin transform 28 (3.36)

β formal Berezin transform 33 (4.5)

OB Berezin push of O 16 (3.7)

VB Berezin pull of V 16 (3.8)

D̂ Berezin-Toeplitz lift of D 27 (3.34)

D⋄ Berezin-Toeplitz transform of D 28 (3.37)

eq Rawnsley coherent vector corresponding to q ∈ L0 13

ex Rawnsley coherent state at x = π(q) 14

e
(k)
v Rawnsley’s coherent vectors in projective case 43 (4.22)

Px coherent projector 14 (3.1)

P
(k)
[v]

Perelomov’s coherent projectors in projective case 43 (4.20)

P
(k)
[v]

Rawnsley coherent projector in Berezin-Bergman quantization 48 (5.4)

P
(k)
x Coherent projectors of Pn at level k 55

Ψ squared two-point function 16 (3.10)

〈 , 〉µ,h
k

Hermitian scalar product on Γ(Lk) with respect to measure µ 6 (2.1)

〈 , 〉h
k

Hermitian scalar product on Γ(Lk) with respect to Liouville measure

µω := ωn

n!

6 (2.2)

〈 , 〉k,σ scalar product on space of smooth functions on Uσ 7 (2.5)
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〈 , 〉 L2-scalar product on E = H0(L) defined by h, i.e. 〈 , 〉 := 〈 , 〉h1 9

〈 , 〉HS Hilbert-Schmidt operator product 15

〈 , 〉X 〈 , 〉X :=
P∞

k=0〈 , 〉k 31 (4.2)

〈 , 〉k scalar product on Bk associated to hk
FS 41 (4.17)

〈 , 〉B Bargmann product 42 (4.18)

ǫ ǫ := ĥ

ĥB

, epsilon function of h relative to ( , ) 8 (2.8)

ǫ may also refer to absolute epsilon function of h 9

( , )′ arbitrary Hermitian scalar product on E distinct from ( , ) 18

≺ , ≻B Berezin scalar product 15 (3.6)

≺ , ≻ scalar product on C∞(X) induced by µ 22 (3.26)

≺ , ≻ǫ scalar product on C∞(X) induced by µǫ 22 (3.27)

ǫPV
k

epsilon function in projective case 43 (4.23)

⋆ formal star product 32

⋆T Toeplitz star product 32

⋆B Berezin star product 33

⋄ Berezin product (aka coherent state star product) 15 (3.4)

⋄k Berezin product (aka coherent state star product) at level k 34 (4.7)
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